CSE 100: RED-BLACK TREES (CONTD)
Insertions: More complicated case

Try inserting 3

Case 1: Parent of leaf is red, & sibling of parent (uncle of leaf) is black or non existent
(a) parent is a left child of grandparent, leaf is left child of parent
Insertions: Case 1

Right AVL rotation, and recolor
Case 1(a) in general

If X's Parent (P) is red, P is a left child of G, X is a left child of P, (and P's sibling (S) is black), then Rotate G right, flip colors of P and G

Why does this work?
Case 1 in general

Same number of black nodes on either side of tree
Roots of subtrees a, b and c (and node S) must be black
X’s and G’s parent is now guaranteed to be black
BST property preserved through AVL rotations
Which insertion can we not handle with the cases we’ve seen so far?

A. 1 B. 7 C. 12 D. 25
Insertions: Case 2

Insert 7

Case 2: Parent of leaf is red, parent is a left child of grandparent, leaf is right child of parent, (& sibling of parent is black)
Insertions: Case 2

Right rotation at 10 might not work. But let's try it to see for sure.

Insert 7

Case 2: Parent of leaf is red, parent is a left child of grandparent, leaf is right child of parent, (& sibling of parent is black)
Insertions: Case 2

Why didn’t this work?
A. It did! We’re done!
B. The property about red nodes having only black children is violated.
C. The property about having the same number of black nodes on any path from the root through a null reference is violated.
Insertions: Case 2

Case 2: Parent of leaf is red, parent is a left child of grandparent, leaf is right child of parent, (& sibling of parent is black)

Insert 7
Insertions: Case 2

Case 2: Parent of leaf is red, parent is a left child of grandparent, leaf is right child of parent, (& sibling of parent is black)

Insert 7

Double rotation!
Insertions: Case 2

Case 2: Parent of leaf is red, parent is a left child of grandparent, leaf is right child of parent, (& sibling of parent is black)
Insertions: Case 2

Insert 7

Case 2: Parent of leaf is red, parent is a left child of grandparent, leaf is right child of parent, (& sibling of parent is black)
Insert 1 and then insert 85. Draw the resulting tree.
Practice

The final tree
Insertions: Summary, so far

Case 0: The parent of the node you are inserting is black. Insert and you’re done

For the remaining cases, the parent of the node is red, the sibling of the parent is black:

- Case 1: P is left child of G, X is left child of P (single rotate then recolor)
- Case 2: P is left child of G, X is right child of P (double rotate then recolor)

What if the sibling of the parent is red??
Insertions: Parent’s sibling is red

Insert 35?
Insertions: Parent’s sibling is red

Insert 35?
Insertions: Parent’s sibling is red

Insert 35?

Solution: fix the tree as you descend so you don’t run into this problem
Insertions: Parent’s sibling is red

1. Nodes are either red or black
2. Root is always black
3. If a node is red, all it’s children must be black
4. For every node X, every path from X to a null reference must contain the same number of black nodes
Insertions: Parent’s sibling is red

1. Nodes are either red or black
2. Root is always black
3. If a node is red, all its children must be black
4. For every node X, every path from X to a null reference must contain the same number of black nodes
Insertions: Parent’s sibling is red

1. Nodes are either red or black
2. Root is always black
3. If a node is red, all its children must be black
4. For every node X, every path from X to a null reference must contain the same number of black nodes
Insertions: Parent’s sibling is red

Both children are red
So recolor

Insert 35?

1. Nodes are either red or black
2. Root is always black
3. If a node is red, all its children must be black
4. For every node X, every path from X to a null reference must contain the same number of black nodes
Insertions: Parent’s sibling is red

Now what?

Notice this is a general case of the situation discussed earlier

Insert 35?
Insertions: Parent’s sibling is red

The color of which node determines our next move?
A. 65
B. 55
C. 85
D. None of the above

Insert 35?
Case 1 in general
(assume this is a legal red-black tree, i.e. there are black nodes hidden in the subtrees)

If X's Parent (P) is red, P is a left child of G, X is a left child of P, (and P’s sibling (S) is black), then Rotate P right, flip colors of P and G
Insertions: Parent’s sibling is red

1. Nodes are either red or black
2. Root is always black
3. If a node is red, all it’s children must be black
4. For every node X, every path from X to a null reference must contain the same number of black nodes

Insert 35?
Insertions: Parent’s sibling is red

1. Nodes are either red or black
2. Root is always black
3. If a node is red, all it’s children must be black
4. For every node X, every path from X to a null reference must contain the same number of black nodes
Insertions: Parent’s sibling is red

1. Nodes are either red or black
2. Root is always black
3. If a node is red, all its children must be black
4. For every node X, every path from X to a null reference must contain the same number of black nodes
Insertions: Parent’s sibling is red

1. Nodes are either red or black
2. Root is always black
3. If a node is red, all its children must be black
4. For every node X, every path from X to a null reference must contain the same number of black nodes

Insert 35?
Insertions: Parent’s sibling is red

1. Nodes are either red or black
2. Root is always black
3. If a node is red, all it’s children must be black
4. For every node X, every path from X to a null reference must contain the same number of black nodes

Insert 35?
Insertions: Parent’s sibling is red

1. Nodes are either red or black
2. Root is always black
3. If a node is red, all its children must be black
4. For every node X, every path from X to a null reference must contain the same number of black nodes

But wait! Nodes 60 and 85 have two red children! Is that OK?

Insert 35? DONE!
Can any node have 2 red children?

• As we descend the tree, we detect if a node X has 2 red children, and if so we do an operation to change the situation.

• Note that in doing so:
 – we may change things so that a node above X now has 2 red children, where it didn’t before! (example: node 60 after we insert 35)
 – if we have to do a double rotation, we will move X up and recolor it so that it becomes black, and has 2 red children itself! (example: work through inserting 64 in the tree on the following page)

• But neither of these is a problem, because
 – it never violates any of the properties of red-black trees (those 2 red nodes will always have a black parent, for example),
 – and the 2 red siblings will be too “high” in the tree for either of them to be the sibling of the parent of any red node that we find or create when we continue this descent of the tree.
Exercise: Insert 64 into this tree

- While not at a leaf:
 - Move down the tree to where node should be placed
 - If you encounter a node with two red children, recolor, then perform any necessary rotations to fix the tree
- Insert the node
- Perform any necessary rotations to fix the tree
Exercise: Insert 64 into this tree

Recolor
Exercise: Insert 64 into this tree

Double rotation (rotation 1)
Exercise: Insert 64 into this tree

Double rotation (rotation 2)
Exercise: Insert 64 into this tree
Exercise: Insert 64 into this tree

```
Exercise:
  Insert
  64
  into
  this
  tree

Insert
```
What is the Big-O running time of insert?

- While not at a leaf:
 - Move down the tree to where node should be placed
 - If you encounter a node with two red children, recolor, then perform any necessary rotations to fix the tree
- Insert the node
- Perform any necessary rotations to fix the tree

Options:
A. \(O(1) \)
B. \(O(\log N) \)
C. \(O(N) \)
D. \(O(N^2) \)
Why use Red-Black Trees

Fast to insert, slightly longer to find than AVL (but still guaranteed O(log(N)))
Discuss with your group why these properties are true in practice
Why use Red-Black Trees

Faster to insert (than AVL): RBT insertion traverses the tree once instead of twice
Slower to find (that AVL): RBTs are generally slightly taller than AVL trees