CSE 100:
TERNARY TRIES
RED-BLACK TREES
Properties of tries

Build the trie to store the following numbers:

So what is the main drawback of tries?
A. They are difficult to implement
B. They (usually) waste a lot of space
C. They are slow
D. There is no drawback of tries
Ternary search trees to the rescue!

- Tries combine binary search trees with tries.
- Each node contains the following:
 - A key digit for search comparison
 - Three pointers:
 - left and right: for when the digit being considered is less than and greater than (respectively) the digit stored in the node (the BST part)
 - middle: for when the digit being considered is equal to the digit stored in the node (the trie part)
 - An end bit to indicate we’ve completed a key stored in the tree.
List all the words (strings) you can find in this TST

Are the following in the tree? (A=yes, B=no)
• get [YES]
• if [YES]
• gif [NO]
• its [YES]
• gacar [NO]
• tsem [NO]
Draw the ternary tree for the following (in this order)

i
 just
 met
 this
 is
 crazy
 call
 me
 maybe

Does the structure of the tree depend on the order in which keys were inserted? A. Yes B. No
Algorithms for insert and find (in TSTs and MWTs)

• In your reading and/or in Paul Kube’s slides
Red-Black Trees

1. Nodes are either red or black
2. Root is always black
3. If a node is red, all its children must be black
4. For every node X, every path from X to a null reference must contain the same number of black nodes
Which of the following are legal red-black trees?

A

B

C

D. A&B

E. A&B&C
Is this a legal Red-Black tree?

A. Yes
B. No
Red-Black Trees

This is a red-black tree but not an AVL tree

Are all red-black trees AVL trees?

No
Red-Black trees have height $O(\log N)$

Proof idea: We will alter this tree so that it is in a form that allows us to make assertions about the height of the altered tree (which will NOT be a red-black tree). Then we will relate the height of the real tree to the height of the altered tree, in the worst case.
Height of a red-black tree is always $O(\log N)$.

Black height of the tree: Number of black nodes on any root to null path.

Sketch of Proof:
1. Obtain a bound on the black height of the tree. To do this alter the tree: Merge the red nodes into their black parents.
Red-nodes Merged into black parents

Sketch of Proof:
1. Obtain a bound on the **black height** of the tree. To do this alter the tree: Merge the red nodes into their black parents

Observe the following:
- Leaves are all at the same level
- Each internal node has at least 2 children

Black height of the tree: Number of black nodes from any root to null path, minus 1
What is the tightest upper bound on the height of this tree, where N_{black} is the number of nodes in this tree?

A. 2 B. $\log_2(N_{\text{black}} + 1)$ C. N_{black}
Red-Black invariants imply balance

Leaves are all at the same level
Each internal node as at least 2 children

Height is at most $\log_2(N+1)$

If you put the red nodes back, this can increase the height by at most a factor of 2

Height is at most $2\log_2(N+1)$
Now for the fun part… insertions

Non-root insertions will always be red
Try inserting 13
That wasn’t so bad!

Case 0: Parent was black. Insert new leaf node (red) and you’re done.
Insertions: More complicated case

Try inserting 3

Case 1: Parent of leaf is red, parent is left child of grandparent, leaf is left child of parent, (& sibling of parent is black)
Insertions: Case 1

Right AVL rotation, and recolor