CSE 100
Disjoint Set, Union Find
Naïve Implementation of Kruskal’s algorithm:

1. Sort edges in increasing order of cost
2. Set of edges in MST, $T = \emptyset$
3. For $i = 1$ to $|E|$
 - If $T \cup \{e_i\}$ has no cycles
 - Add e_i to T

Ref: Tim Roughgarden (stanford)
Towards a fast implementation of Kruskal’s Algorithm

Q: Which of the following algorithms can be used to check if adding an edge \((v, w)\) to an existing Graph creates a cycle?

A. DFS
B. BFS
C. Either A or B
D. None of the above
BFS: Running Time

The basic idea is a breadth-first search of the graph, starting at source vertex s

• Initially, give all vertices in the graph a distance of INFINITY
• Start at s; give s distance = 0
• Enqueue s into a queue
• While the queue is not empty:
 ‣ Dequeue the vertex v from the head of the queue
 ‣ For each of v’s adjacent nodes that has not yet been visited:
 • Mark its distance as 1 + the distance to v
 • Enqueue it in the queue

What is the time complexity (in terms of |V| and |E|) of this algorithm?

A. O(|V|)
B. O(|V| |E|)
C. O(|V| + |E|)
D. O(|V|^2) E. Other
Running Time of Naïve Implementation of Kruskal’s algorithm using BFS for cycle checks:

1. Sort edges in increasing order of cost

2. Set of edges in MST, \(T = \{ \} \)

3. For \(i = 1 \) to \(|E| \)

 If \(T \cup \{e_i\} \) has no cycles

 Add \(e_i \) to \(T \)

Ref: Tim Roughgarden (stanford)
Towards a fast implementation for Kruskal’s Algorithm

• What is the work that we are repeatedly doing with Kruskal’s Algo?
Towards a fast implementation for Kruskal’s Algorithm

- What is the work that we are repeatedly doing in Kruskal’s Algo?
 - Checking for cycles: Linear with BFS, DFS
 - Union-Find Data structure allows us to do this in nearly constant time!
The Union-Find Data Structure

• Efficient way of maintaining partitions
• Supports only two operations
 • Union
 • Find
Equivalence Relations

• An equivalence relation $E(x,y)$ over a domain S is a boolean function that satisfies these properties for every x,y,z in S
 - $E(x,x)$ is true (reflexivity)
 - If $E(x,y)$ is true, then $E(y,x)$ is true (symmetry)
 - If $E(x,y)$ and $E(y,z)$ are true, then $E(x,z)$ is true (transitivity)

• Example 1:
 - $E(x,y)$: Are the integers x and y equal?
 - Then $E()$ is an equivalence relation over integers

• Example 2: Given vertices x and y in a Graph G
 - $E(x,y)$: Are x and y connected?
Equivalence Classes

• An equivalence relation \(E() \) over a set \(S \) defines a system of \textit{equivalence classes} within \(S \)
 • The equivalence class of some element \(x \in S \) is that set of all \(y \in S \) such that \(E(x,y) \) is true
 • Note that every equivalence class defined this way is a subset of \(S \)
 • The equivalence classes are disjoint subsets: no element of \(S \) is in two different equivalence classes
 • The equivalence classes are exhaustive: every element of \(S \) is in some equivalence class

• Example 1:
 • \(E(x,y) \): Are the integers \(x \) and \(y \) equal?
 • Then \(E() \) is an equivalence relation over integers
 • The equivalence classes in this case is:
Equivalence Classes for Kruskal’s

For Kruskal’s algo we will partition all vertices of the graph into disjoint sets, based on the equivalence relation: Are two vertices connected?

Q: The above equivalence relation partitions the graph into which of the following equivalence classes?

A. Connected subgraphs
B. Fully-connected (Complete) subgraphs
Application of Union-Find to Kruskal’s MST

- Vertices that form a connected subgraph will be in the same group
- Connected subgraphs that are disconnected from each other will be in different groups

Q1: How can we check if adding an edge \((v, w)\) to the graph creates a cycle using the operations supported by union-find?

Q2: In Kruskal’s algo what would we like to do if adding the edge does not create a cycle?
Union-find using up-trees

- Each subtree represents a disjoint set
- The root node represents the set that any node belongs to

Perform these operations:

Find(4) =
Find(3) =
Union(1,0)=
Find(4)=

Running Time of Kruskal’s algorithm with union find data structure:

1. Sort edges in increasing order of cost

2. Set of edges in MST, T={}

3. For i= 1 to |E|

 if (find(u)!=find(v)) { //If T U {e_i=u,v} has no cycles
 Add e_i to T
 union(find(u), find(v))
 }

Ref: Tim Roughgarden (stanford)