CSE 100
Disjoint Set, Union Find
Naïve Implementation of Kruskal’s algorithm:

1. Sort edges in increasing order of cost

2. Set of edges in MST, T={}

3. For $i = 1$ to $|E|$

 If $T \cup \{e_i\}$ has no cycles

 Add e_i to T

Ref: Tim Roughgarden (stanford)
Towards a fast implementation of Kruskal’s Algorithm

Q: Which of the following algorithms can be used to check if adding an edge \((v, w)\) to an existing Graph creates a cycle?

A. DFS
B. BFS
C. Either A or B
D. None of the above
The basic idea is a breadth-first search of the graph, starting at source vertex s

- Initially, give all vertices in the graph a distance of INFINITY
- Start at s; give s distance = 0
- Enqueue s into a queue
- While the queue is not empty:
 - Dequeue the vertex v from the head of the queue
 - For each of v’s adjacent nodes that has not yet been visited:
 - Mark its distance as 1 + the distance to v
 - Enqueue it in the queue

What is the time complexity (in terms of $|V|$ and $|E|$) of this algorithm?

A. $O(|V|)$
B. $O(|V||E|)$
C. $O(|V|+|E|)$
D. $O(|V|^2)$
E. Other
Running Time of Naïve Implementation of Kruskal’s algorithm using BFS for cycle checks:

1. Sort edges in increasing order of cost

2. Set of edges in MST, \(T = \{ \} \)

3. For \(i = 1 \) to \(|E| \) \(\leq \) \(|E| \) iterations

 If \(T \cup \{ e_i \} \) has no cycles using BFS or DFS

 Add \(e_i \) to \(T \)

 \(O(1) \)

\[|E| \text{spanning} = |V| - 1 \]
\[\therefore O(|V| + |E| \text{spanning}) = O(|V|) \]
\[|E| \leq |V|^2 \]
\[\therefore O(|E| \log |V|) = O(|E| \log |V|^2) = O(|E| \log |V|) \]

Ref: Tim Roughgarden (stanford)
Towards a fast implementation for Kruskal’s Algorithm

• What is the work that we are repeatedly doing with Kruskal’s Algo?
Towards a fast implementation for Kruskal’s Algorithm

• What is the work that we are repeatedly doing in Kruskal’s Algo?
 ‣ Checking for cycles: Linear with BFS, DFS
 ‣ Union-Find Data structure allows us to do this in nearly constant time!
The Union-Find Data Structure (Disjoint-Set ADT)

- Efficient way of maintaining partitions
- Supports only two operations
 - Union \((S_3, S_4)\) Merges \((S_3, S_4)\)
 - Find \((v_6)\): Set that \(v_6\) belongs to

\[S \]

\[E(v_0, v_6) \]
Equivalence Relations

• An equivalence relation $E(x,y)$ over a domain S is a boolean function that satisfies these properties for every x,y,z in S
 - $E(x,x)$ is true \[(\text{reflexivity})\]
 - If $E(x,y)$ is true, then $E(y,x)$ is true \[(\text{symmetry})\]
 - If $E(x,y)$ and $E(y,z)$ are true, then $E(x,z)$ is true \[(\text{transitivity})\]

• Example 1:
 - $E(x,y)$: Are the integers x and y equal?
 - Then $E()$ is an equivalence relation over integers

• Example 2: Given vertices x and y in a Graph G
 - $E(x,y)$: Are x and y connected?
Equivalence Classes

• An equivalence relation E() over a set S defines a system of *equivalence classes* within S
 • The equivalence class of some element \(x \in S \) is that set of all \(y \in S \) such that \(E(x,y) \) is true
 • Note that every equivalence class defined this way is a subset of S
 • The equivalence classes are disjoint subsets: no element of S is in two different equivalence classes
 • The equivalence classes are exhaustive: every element of S is in some equivalence class

• Example 1:
 • \(E(x,y) \): Are the integers x and y equal?
 • Then E() is an equivalence relation over integers
 • The equivalence classes in this case is:
For Kruskal’s algo we will partition all vertices of the graph into disjoint sets, based on the equivalence relation: Are two vertices connected?

Q: The above equivalence relation partitions the graph into which of the following equivalence classes?

A. Connected subgraphs
B. Fully-connected (Complete) subgraphs
Application of Union-Find to Kruskal’s MST

- Vertices that form a connected subgraph will be in the same group
- Connected subgraphs that are disconnected from each other will be in different groups

Q1: How can we check if adding an edge \((v, w)\) to the graph creates a cycle using the operations supported by union-find?

Q2: In Kruskal’s algo what would we like to do if adding the edge does not create a cycle?