CSE 100
Disjoint Set, Union Find
Naïve Implementation of Kruskal’s algorithm:

1. Sort edges in increasing order of cost

2. Set of edges in MST, T = {}

3. For $i = 1$ to $|E|$

 If $T \cup \{e_i\}$ has no cycles

 Add e_i to T

Ref: Tim Roughgarden (stanford)
Towards a fast implementation of Kruskal’s Algorithm

Q: Which of the following algorithms can be used to check if adding an edge \((v, w)\) to an existing Graph creates a cycle?

A. DFS
B. BFS
C. Either A or B
D. None of the above
BFS: Running Time

The basic idea is a breadth-first search of the graph, starting at source vertex s

- Initially, give all vertices in the graph a distance of INFINITY
- Start at s; give s distance $= 0$
- Enqueue s into a queue
- While the queue is not empty:
 - Dequeue the vertex v from the head of the queue
 - For each of v’s adjacent nodes that has not yet been visited:
 - Mark its distance as $1 +$ the distance to v
 - Enqueue it in the queue

What is the time complexity (in terms of $|V|$ and $|E|$) of this algorithm?

A. $O(|V|)$
B. $O(|V||E|)$
C. $O(|V|+|E|)$
D. $O(|V|^2)$
E. Other
Running Time of Naïve Implementation of Kruskal’s algorithm using BFS for cycle checks:

1. Sort edges in increasing order of cost
2. Set of edges in MST, T={}
3. For i= 1 to |E|
 If T U {e_i} has no cycles
 Add e_i to T

Ref: Tim Roughgarden (stanford)
Towards a fast implementation for Kruskal’s Algorithm

- What is the work that we are repeatedly doing with Kruskal’s Algo?
Towards a fast implementation for Kruskal’s Algorithm

- What is the work that we are repeatedly doing in Kruskal’s Algo?
 - Checking for cycles: Linear with BFS, DFS
 - Union-Find Data structure allows us to do this in nearly constant time!
The Union-Find Data Structure

- Efficient way of maintaining partitions
- Supports only two operations
 - Union
 - Find
Equivalence Relations

• An equivalence relation $E(x,y)$ over a domain S is a boolean function that satisfies these properties for every x,y,z in S

 • $E(x,x)$ is true \hspace{1cm} (reflexivity)
 • If $E(x,y)$ is true, then $E(y,x)$ is true \hspace{1cm} (symmetry)
 • If $E(x,y)$ and $E(y,z)$ are true, then $E(x,z)$ is true \hspace{1cm} (transitivity)

• Example 1:
 • $E(x,y)$: Are the integers x and y equal?
 • Then $E()$ is an equivalence relation over integers

• Example 2: Given vertices x and y in a Graph G
 • $E(x,y)$: Are x and y connected?
Equivalence Classes

• An equivalence relation E() over a set S defines a system of *equivalence classes* within S
 • The equivalence class of some element x ∈ S is that set of all y ∈ S such that E(x,y) is true
 • Note that every equivalence class defined this way is a subset of S
 • The equivalence classes are disjoint subsets: no element of S is in two different equivalence classes
 • The equivalence classes are exhaustive: every element of S is in some equivalence class

• Example 1:
 • E(x,y): Are the integers x and y equal?
 • Then E() is an equivalence relation over integers
 • The equivalence classes in this case is:
Equivalence Classes for Kruskal’s

For Kruskal’s algo we will partition all vertices of the graph into disjoint sets, based on the equivalence relation: Are two vertices connected?

Q: The above equivalence relation partitions the graph into which of the following equivalence classes?

A. Connected subgraphs

B. Fully-connected (Complete) subgraphs
Application of Union-Find to Kruskal’s MST

- Vertices that form a connected subgraph will be in the same group
- Connected subgraphs that are disconnected from each other will be in different groups

Q1: How can we check if adding an edge \((v, w)\) to the graph creates a cycle using the operations supported by union-find?

Q2: In Kruskal’s algo what would we like to do if adding the edge does not create a cycle?
Union-find using up-trees

- Each subtree represents a disjoint set
- The root node represents the set that any node belongs to

Perform these operations:

\[
\text{Find}(4) = \\
\text{Find}(3) = \\
\text{Union}(1, 0) = \\
\text{Find}(4) =
\]
Running Time of Kruskal’s algorithm with union find data structure:

1. Sort edges in increasing order of cost

2. Set of edges in MST, \(T = \{ \} \)

3. For \(i = 1 \) to \(|E| \)

 if \((\text{find}(u) \neq \text{find}(v)) \) \{ //If \(T \cup \{e_i = u, v\} \) has no cycles

 Add \(e_i \) to \(T \)

 union(\text{find}(u), \text{find}(v))

 \}

Ref: Tim Roughgarden (stanford)