CSE 100: RUNTIME ANALYSIS: BST FIND
Average case analysis

• Warning! There will be math 😊
• Why is it important that we do this?
 • So you have a hope of doing it yourself on a new data structure (perhaps one you invent?)
 • Mathematical analysis can be insightful!
Given a BST having:
- N nodes x_1, \ldots, x_N such that $\text{key}(x_i) = k_i$
- Probability of searching for key k_i is p_i

What is the expected number of comparisons to find a key?

A. $\sum_{i=1}^{N} p_i \cdot (\text{No. of comparisons to find } k_i)$

B. $\sum_{i=1}^{N} p_i \cdot x_i$

C. $\left(\sum_{i=1}^{N} \text{No. of comparisons to find } k_i\right) / N$
Number of compares to find key \(k_i \) is related to the Depth of \(x_i \) in the BST

- **Depth** of node \(x_i \): No. of nodes on the path from the root to \(x_i \) inclusive

- Notation for depth of \(x_i \):
 \[
 \Delta(x_i) = \# \cdot \langle k_i \rangle = d(x_i)
 \]
Probabilistic Assumption #1

- **Probabilistic Assumption #1:**
 All keys are equally likely to be searched (how realistic is this)?

- Thus $p_1 = \ldots = p_N = \frac{1}{N}$ and the average number of comparisons in a successful find is:

$$D_{avg}(N) = \sum_{i=1}^{N} p_i d(x_i) = \sum_{i=1}^{N} \frac{1}{N} d(x_i) = \frac{1}{N} \left(\sum_{i=1}^{N} d(x_i) \right)$$

$$\sum_{i=1}^{N} d(x_i) = \text{total node depth}$$
Calculating total node depth

What is the total node depth of this tree?
A. 3
B. 5
C. 6
D. 9
E. None of these

\[3 + 3 + 2 + 1 = 9\]
Calculating total node depth

- In a complete analysis of the average cases, we need to look at all possible BSTs that can be constructed with same set of N keys.
- What does the structure of the tree relate to?
How many possible ways can we insert three elements into a BST?

• Suppose \(N=3\) and the keys are \((1, 3, 5)\)
How many possible ways can we insert three elements into a BST?

• Suppose N=3:

(1,3,5); (1,5,3); (3,1,5); (3,5,1); (5,1,3); (5,3,1)

6 possible trees

What is the total number of possibilities for an N-node BSTs?

A. N^N
B. $N!$
C. e^N
D. N^N
E. None of these
Given a set of N keys: The structure of a BST constructed from those keys is determined by the order the keys are inserted.

Example: $N=3$. There are $N! = 3! = 6$ different orders of insertion of the 3 keys. Here are resulting trees:
Probabilistic assumption #2

- We may assume that each key is equally likely to be the first key inserted; each remaining key is equally likely to be the next one inserted; etc.

- This leads to **Probabilistic Assumption #2**

 Any insertion order (i.e. any permutation) of the keys is equally likely when building the BST

- This means with 3 keys, each of the following trees can occur with probability 1/6
Average Case for successful Find: Brute Force Method

\[\sum_{i} p_{i} N_{p_{i}} \]

\[= \frac{1}{N} \times D(x_{i}) \]

\[= \frac{1}{6} \times (5 + 6 + 6 + 6 + 6 + 5) \]

\[= \]
Average # of comparisons in a single tree

• Let $D(N)$ be the expected total depth of BSTs with N nodes, over all the $N!$ possible BSTs, assuming that Probabilistic Assumption #2 holds.

$$D(N) = \sum_{\text{all BSTs } T_j \text{ with } N \text{ nodes}} \left(\text{probability of } T_j \right) \left(\text{Total Depth}(T_j) \right)$$

$$= \sum_{\text{all BSTs with } N \text{ nodes}} \left(\frac{1}{N!} \right) \left(\sum_{i=1}^{N} d(x_i) \right)$$

• If Assumption #1 also holds, the average # comparisons in a successful find is

$$D_{\text{avg}}(N) = \frac{D(N)}{N}$$

The computationally intensive part is constructing $N!$ trees to compute $N!$ total depth values: This is a brute force method!
How do we compute $D(N)$?

$$D(N) = \sum_{\text{all BSTs with } N \text{ nodes}} \left(\frac{1}{N!} \right) \left(\sum_{i=1}^{N} d(x_i) \right)$$

We need an equation for $D(N)$ that does not involve computing $N!$ total depth values (in a brute force fashion).

Key Idea: We will build a recurrence relation for $D(N)$ in terms of $D(N-1)$ and then solve that recurrence relation to give us a sum over N (instead of $N!$).
Towards a recurrence relation for average BST total depth

- Define $D(N|i)$ as expected total depth of a BST with N nodes, assuming that T_L has i nodes (and T_R has $N-i-1$ nodes)
Average case analysis of find in BST

- Given N nodes, how many such subsets of trees are possible as i is varied?

A. N
B. N!
C. $\log_2 N$
D. $(N-1)!$
Probability of subtree sizes

• Let $P_N(i)$ = the probability that T_L has i nodes
• It follows that $D(N)$ is given by the following equation

$$D(N) = \sum_{i=0}^{N-1} P_N(i)D(N|i)$$

= \left(\frac{1}{N} \right) D(N|i)

= D(i) + iD(N-i-1) + \frac{N-N+1}{N}$$

$$D(i) + D(N-i-1) + i$$
Average total depth of a BST with N nodes

\[D(N) = \sum_{i=0}^{N-1} P_N(i) D(N \mid i) \]

\[D(N) = \sum_{i=0}^{N-1} \frac{1}{N} [D(i) + D(N-i-1) + N] \]

\[D(N) = \frac{1}{N} \sum_{i=0}^{N-1} D(i) + \frac{1}{N} \sum_{i=0}^{N-1} D(N-i-1) + N \]

True or false: The term in the blue box is equal to the term in the red box

A. True
B. False
- Note that those two summations just add the same terms in different order; so

\[
D(N) = \left(\frac{2}{N} \right) \sum_{i=0}^{N-1} D(i) + N
\]

- ... and multiplying by \(N \),

\[
ND(N) = 2 \sum_{i=0}^{N-1} D(i) + N^2 = 2 \left(\sum_{i=0}^{N} D(i) \right) + N^2
\]

- Now substituting \(N-1 \) for \(N \),

\[
(N-1)D(N-1) = 2 \sum_{i=0}^{N-2} D(i) + (N-1)^2
\]

- Subtracting that equation from the one before it gives

\[
ND(N) - (N-1)D(N-1) = 2D(N-1) + (N^2 - (N-1)^2)
\]

- ... and collecting terms finally gives this recurrence relation on \(D(N) \):

\[
ND(N) = (N + 1)D(N-1) + 2N - 1
\]
\[N \times D(N) = (N+1) \times D(N-1) + 2N - 1 \]

How does this help us, again?

A. We can solve it to yield a formula for \(D(N) \) that does not involve \(N! \)
B. We can use it to compute \(D(N) \) directly
C. I have no idea, I’m totally lost
Through unwinding and some not-so-complicated algebra (which you can find in your reading, a.k.a. Paul’s slides) we arrive at:

\[ND(N) = (N + 1)D(N - 1) + 2N - 1 \]

No N! to be seen! Yay!

And with a little more algebra, we can even show an approximation:

\[D(N) = 2(N + 1)\sum_{i = 1}^{N} \frac{1}{i} - 3N \]

Conclusion: The average time to find an element in a BST with no restrictions on shape is \(\Theta(\log N) \).
The importance of being balanced

- A binary search tree has average-case time cost for Find = \(\Theta (\log N) \):
 What does this analysis tell us:
 - On an average things are not so bad provided assumptions 1 and 2 hold
 - But the probabilistic assumptions we made often don’t hold in practice
 - Assumption #1 may not hold: we may search some keys many more times than others
 - Assumption #2 may not hold: approximately sorted input is actually quite likely, leading to unbalanced trees with worst-case cost closer to \(O(N) \) when \(N \) is large
 - We would like our search trees to be balanced
The importance of being balanced

- We would like our search trees to be balanced
- Two kinds of approaches
 - Deterministic methods guarantee balance, but operations are somewhat complicated to implement (AVL trees, red black trees)
 - Randomized methods (treaps, skip lists) (insight from our result) – deliberate randomness in constructing the tree helps!!
 - Operations are simpler to implement
 - Balance not absolutely guaranteed, but achieved with high probability
- We will return to this topic later in the course