Program Representations
Representing programs

- Goals
Representing programs

• Primary goals
 – analysis is easy and effective
 • just a few cases to handle
 • directly link related things
 – transformations are easy to perform
 – general, across input languages and target machines

• Additional goals
 – compact in memory
 – easy to translate to and from
 – tracks info from source through to binary, for source-level debugging, profiling, typed binaries
 – extensible (new opts, targets, language features)
 – displayable
Option 1: high-level syntax based IR

- Represent source-level structures and expressions directly
- Example: Abstract Syntax Tree

Source:
```plaintext
for i := 1 to 10 do
    a[i] := b[i] * 5;
end
```

AST:
Option 2: low-level IR

- Translate input programs into low-level primitive chunks, often close to the target machine

- Examples: assembly code, virtual machine code (e.g. stack machines), three-address code, register-transfer language (RTL)

- Standard RTL instrs:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>RTL Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>assignment</td>
<td>(x := y;)</td>
</tr>
<tr>
<td>unary op</td>
<td>(x := \text{op } y;)</td>
</tr>
<tr>
<td>binary op</td>
<td>(x := y \text{ op } z;)</td>
</tr>
<tr>
<td>address-of</td>
<td>(p := &y;)</td>
</tr>
<tr>
<td>load</td>
<td>(x := *(p + o);)</td>
</tr>
<tr>
<td>store</td>
<td>(*(p + o) := x;)</td>
</tr>
<tr>
<td>call</td>
<td>(x := f(...);)</td>
</tr>
<tr>
<td>unary compare</td>
<td>(\text{op } x \ ?)</td>
</tr>
<tr>
<td>binary compare</td>
<td>(x \text{ op } y \ ?)</td>
</tr>
</tbody>
</table>
Option 2: low-level IR

Source:

```
for i := 1 to 10 do
  a[i] := b[i] * 5;
end
```

Control flow graph containing RTL instructions:

```
i := 1

i <= 10?

t1 := i * 4
t2 := & b
t3 := *(t2 + t1)
t4 := t3 * 5
t5 := i * 4
t6 := & a
*(t6 + t5) := t4
i := i + 1
```
Comparison
Comparison

• Advantages of high-level rep
 – analysis can exploit high-level knowledge of constructs
 – easy to map to source code (debugging, profiling)

• Advantages of low-level rep
 – can do low-level, machine specific reasoning
 – can be language-independent

• Can mix multiple reps in the same compiler
Components of representation

• Control dependencies: sequencing of operations
 – evaluation of if & then
 – side-effects of statements occur in right order

• Data dependencies: flow of definitions from defs to uses
 – operands computed before operations

• Ideal: represent just dependencies that matter
 – dependencies constrain transformations
 – fewest dependences \Rightarrow flexibility in implementation
Control dependencies

- Option 1: high-level representation
 - control implicit in semantics of AST nodes

- Option 2: control flow graph (CFG)
 - nodes are individual instructions
 - edges represent control flow between instructions

- Options 2b: CFG with basic blocks
 - basic block: sequence of instructions that don’t have any branches, and that have a single entry point
 - BB can make analysis more efficient: compute flow functions for an entire BB before start of analysis
Control dependencies

- CFG does not capture loops very well

- Some fancier options include:
 - the Control Dependence Graph
 - the Program Dependence Graph

- More on this later. Let’s first look at data dependencies
Data dependencies

• Simplest way to represent data dependencies: def/use chains
Def/use chains

- Directly captures dataflow
 - works well for things like constant prop
- But...
- Ignores control flow
 - misses some opt opportunities since conservatively considers all paths
 - not executable by itself (for example, need to keep CFG around)
 - not appropriate for code motion transformations
- Must update after each transformation
- Space consuming
• Static Single Assignment
 – invariant: each use of a variable has only one def
\[x := \ldots \\
\ldots x \ldots \\
\]
\[y := \ldots \\
\ldots x \ldots \\
\]
\[x := x + y \\
\ldots x \ldots \\
\]
\[y := y + 1 \\
\ldots x \ldots \\
\]
SSA

• Create a new variable for each def
• Insert ϕ pseudo-assignments at merge points
• Adjust uses to refer to appropriate new names

• Question: how can one figure out where to insert ϕ nodes using a liveness analysis and a reaching defns analysis.
Converting back from SSA

- Semantics of $x_3 := \phi(x_1, x_2)$
 - set x_3 to x_i if execution came from ith predecessor

- How to implement ϕ nodes?
Converting back from SSA

• Semantics of $x_3 := \phi(x_1, x_2)$
 – set x_3 to x_i if execution came from ith predecessor

• How to implement ϕ nodes?
 – Insert assignment $x_3 := x_1$ along 1$^{\text{st}}$ predecessor
 – Insert assignment $x_3 := x_2$ along 2$^{\text{nd}}$ predecessor

• If register allocator assigns x_1, x_2 and x_3 to the same register, these moves can be removed
 – $x_1 .. x_n$ usually have non-overlapping lifetimes, so this kind of register assignment is legal
Recall: Common Sub-expression Elim

• Want to compute when an expression is available in a var

• Domain:

\[\{ x \to E_1, \ y \to E_2, \ z \to E_3 \} \]

\[S = \{ x \to E \mid x \in \text{Var}, \ E \in \text{Exp} \} \]

0 \in S

f \in S

T \in \emptyset

u = \top
Recall: CSE Flow functions

\[X := Y \text{ op } Z\]

\[\begin{array}{c}
\text{in} \\
X := Y \text{ op } Z \\
\text{out}
\end{array}\]

\[F_{X := Y \text{ op } Z}(\text{in}) = \text{in} - \{X \rightarrow *\} - \{* \rightarrow \ldots X \ldots\} \cup \{X \rightarrow Y \text{ op } Z \mid X \neq Y \land X \neq Z\}\]

\[\begin{array}{c}
\text{in} \\
X := Y \\
\text{out}
\end{array}\]

\[F_{X := Y}(\text{in}) = \text{in} - \{X \rightarrow *\} - \{* \rightarrow \ldots X \ldots\} \cup \{X \rightarrow E \mid Y \rightarrow E \in \text{in}\}\]
Example

\[i := a + b \]
\[x := i \times 4 \]
\[j := i \]
\[i := c \]
\[z := j \times 4 \]
\[m := b + a \]
\[w := 4 \times m \]
\[y := i \times 4 \]
\[i := i + 1 \]
Example

\[i := a + b \]
\[x := i \times 4 \]
\[y := i \times 4 \]
\[i := i + 1 \]
\[m := b + a \]
\[w := 4 \times m \]

\[j := i \]
\[i := c \]
\[z := j \times 4 \]

\[\{ i \rightarrow a + b \} \]
\[\{ x \rightarrow i \times 4 \} \]
\[\{ m \rightarrow b + a \} \]
\[\{ w \rightarrow \ldots \} \]
Problems

• $z := j \times 4$ is not optimized to $z := x$, even though x contains the value $j \times 4$

• $m := b + a$ is not optimized, even though $a + b$ was already computed

• $w := 4 \times m$ it not optimized to $w := x$, even though x contains the value $4 \times m$
Problems: more abstractly

- Available expressions overly sensitive to name choices, operand orderings, renamings, assignments
- Use SSA: distinct values have distinct names
- Do copy prop before running available exprs
- Adopt canonical form for commutative ops
Example in SSA

\[\begin{align*}
X &:= Y \text{ op } Z \\
F_X &:= \phi(Y, Z)(\text{in}) = \\
\end{align*} \]
Example in SSA

\[X := Y \ op \ Z \]

\[X \ := \ \phi(Y, Z) \]

\[F_X := Y \ op \ Z(\text{in}) = \text{in} \cup \{ \ X \rightarrow Y \ op \ Z \} \]

\[F_X := \phi(Y, Z)(\text{in}_0, \text{in}_1) = (\text{in}_0 \cap \text{in}_1) \cup \{ \ X \rightarrow E \mid Y \rightarrow E \in \text{in}_0 \land Z \rightarrow E \in \text{in}_1 \} \]
Example in SSA

\[
i := a + b \\
x := i \times 4
\]

\[
\begin{align*}
j &:= i \\
i &:= c \\
z &:= j \times 4
\end{align*}
\]

\[
\begin{align*}
m &:= b + a \\
w &:= 4 \times m
\end{align*}
\]

\[
\begin{align*}
y &:= i \times 4 \\
i &:= i + 1
\end{align*}
\]
Example in SSA

\[i_1 := a_1 + b_1 \]
\[x_1 := i_1 \times 4 \]
\[j_1 := i_1 \]
\[i_2 := c_1 \]
\[z_1 := i_1 \times 4 \]
\[m_1 := a_1 + b_1 \]
\[w_1 := m_1 \times 4 \]
\[i_4 := \phi(i_1, i_3) \]
\[y_1 := i_4 \times 4 \]
\[i_3 := i_4 + 1 \]
What about pointers?

- Pointers complicate SSA. Several options.

 - Option 1: don’t use SSA for pointed to variables
 - Option 2: adapt SSA to account for pointers
 - Option 3: define src language so that variables cannot be pointed to (eg: Java)
SSA helps us with CSE

• Let’s see what else SSA can help us with

• Loop-invariant code motion
Loop-invariant code motion

• Two steps: analysis and transformations

• Step 1: find invariant computations in loop
 – invariant: computes same result each time evaluated

• Step 2: move them outside loop
 – to top if used within loop: code hoisting
 – to bottom if used after loop: code sinking
Example

\[x := 3 \]

\[y := 4 \]

\[z := x \ast y \]
\[q := y \ast y \]
\[w := y + 2 \]

\[y := 5 \]

\[w := w + 5 \]

\[p := w + y \]
\[x := x + 1 \]
\[q := q + 1 \]
Example

\[x := 3 \]
\[y := 4 \]
\[z := x \times y \]
\[q := y \times y \]
\[w := y + 2 \]
\[w := w + 5 \]
\[p := w + y \]
\[x := x + 1 \]
\[q := q + 1 \]
\[y := 5 \]
Detecting loop invariants

• An expression is invariant in a loop L iff:

(base cases)
 – it’s a constant
 – it’s a variable use, all of whose defs are outside of L

(inductive cases)
 – it’s a pure computation all of whose args are loop-invariant
 – it’s a variable use with only one reaching def, and the rhs of that def is loop-invariant
Computing loop invariants

- Option 1: iterative dataflow analysis
 - optimistically assume all expressions loop-invariant, and propagate

- Option 2: build def/use chains
 - follow chains to identify and propagate invariant expressions

- Option 3: SSA
 - like option 2, but using SSA instead of def/use chains
Example using def/use chains

- An expression is invariant in a loop L iff:

 (base cases)
 - it’s a constant
 - it’s a variable use, all of whose defs are outside of L

 (inductive cases)
 - it’s a pure computation all of whose args are loop-invariant
 - it’s a variable use with only one reaching def, and the rhs of that def is loop-invariant
Example using def/use chains

An expression is invariant in a loop L iff:

(base cases)
- it’s a constant
- it’s a variable use, all of whose defs are outside of L

(inductive cases)
- it’s a pure computation all of whose args are loop-invariant
- it’s a variable use with only one reaching def, and the rhs of that def is loop-invariant
Loop invariant detection using SSA

• An expression is invariant in a loop L iff:

 (base cases)
 – it’s a constant
 – it’s a variable use, all of whose single defs are outside of L

 (inductive cases)
 – it’s a pure computation all of whose args are loop-invariant
 – it’s a variable use whose single reaching def, and the rhs of that def is loop-invariant

• ϕ functions are not pure
Example using SSA

• An expression is invariant in a loop L iff:

 (base cases)
 – it’s a constant
 – it’s a variable use, all of whose single defs are outside of L

 (inductive cases)
 – it’s a pure computation all of whose args are loop-invariant
 – it’s a variable use whose single reaching def, and the rhs of that def is loop-invariant

• ϕ functions are not pure
Example using SSA and preheader

- An expression is invariant in a loop L iff:

 (base cases)
 - it’s a constant
 - it’s a variable use, all of whose single defs are outside of L

 (inductive cases)
 - it’s a pure computation all of whose args are loop-invariant
 - it’s a variable use whose single reaching def, and the rhs of that def is loop-invariant

- ϕ functions are not pure
Summary: Loop-invariant code motion

- Two steps: analysis and transformations

- Step 1: find invariant computations in loop
 - invariant: computes same result each time evaluated

- Step 2: move them outside loop
 - to top if used within loop: code hoisting
 - to bottom if used after loop: code sinking
Code motion

• Say we found an invariant computation, and we want to move it out of the loop (to loop pre-header)

• When is it legal?

• Need to preserve relative order of invariant computations to preserve data flow among move statements

• Need to preserve relative order between invariant computations and other computations
Example

x := a * b
y := x / z
i := i + 1

z != 0 &&
i < 100 ?

q := x + 1

x := 0
y := 1
i := 0
Lesson from example: domination restriction

• To move statement S to loop pre-header, S must **dominate** all loop exits

 [A dominates B when all paths to B first pass through A]

• Otherwise may execute S when never executed otherwise

• If S is pure, then can relax this constraint at cost of possibly slowing down the program
Domination restriction in for loops

\[i := 0 \]

\[i < N? \]

\[x := a / b \]
\[i := i + 1 \]
Domination restriction in for loops

Before

\[i := 0 \]

\[i < N? \]

\[x := a / b \]
\[i := i + 1 \]

After

\[i := 0 \]

\[i < N? \]

\[x := a / b \]
\[i := i + 1 \]

\[i < N? \]
Avoiding domination restriction

• Domination restriction strict
 – Nothing inside branch can be moved
 – Nothing after a loop exit can be moved

• Can be circumvented through loop normalization
 – while-do => if-do-while
Another example

\[
\begin{align*}
z & := 5 \\
i & := 0 \\
z & := z + 1 \\
z & := 0 \\
i & := i + 1 \\
i < N \ ? \\
\ldots z \ldots
\end{align*}
\]
Data dependence restriction

• To move S: $z := x \ op \ y$:

 S must be the only assignment to z in loop, and no use of z in loop reached by any def other than S

• Otherwise may reorder defs/uses
Avoiding data restriction

\[
\begin{align*}
z & := 5 \\
i & := 0
\end{align*}
\]

\[
\begin{align*}
z & := z + 1 \\
z & := 0 \\
i & := i + 1 \\
i & < N?
\end{align*}
\]

\[
\ldots z \ldots
\]
Avoiding data restriction

\[z_1 := 5 \]
\[i_1 := 0 \]

\[z_2 := \phi(z_1, z_4) \]
\[i_2 := \phi(i_1, i_3) \]
\[z_3 := z_2 + 1 \]
\[z_4 := 0 \]
\[i_3 := i_2 + 1 \]
\[i_3 < N \]

- Restriction unnecessary in SSA!!!
- Implementation of phi nodes as moves will cope with re-ordered defs/uses
Summary of Data dependencies

• We’ve seen SSA, a way to encode data dependencies better than just def/use chains
 – makes CSE easier
 – makes loop invariant detection easier
 – makes code motion easier

• Now we move on to looking at how to encode control dependencies
Control Dependencies

• A node (basic block) Y is control-dependent on another X iff X determines whether Y executes
 – there exists a path from X to Y s.t. every node in the path other than X and Y is post-dominated by Y
 – X is not post-dominated by Y
Control Dependencies

- A node (basic block) Y is control-dependent on another X iff X determines whether Y executes:
 - there exists a path from X to Y s.t. every node in the path other than X and Y is post-dominated by Y
 - X is not post-dominated by Y
Example

1. \(y := p + q \)
2. \(x > 0? \)
3. \(a := x \times y \)
4. \(a := y - 2 \)
5. \(w := y / q \)
6. \(x > 0? \)
7. \(b := 1 << w \)
8. \(r := a \% b \)
Example

```
Proc

1 y := p + q
2 x > 0?

3 a := x * y
4 a := y - 2

5 w := y / q
6 x > 0?

7 b := 1 << w

8 r := a % b
```

Control dependence relation

3 depends on 2
4 " " 2
7 " " 6
Control Dependence Graph

• Control dependence graph: Y descendent of X iff Y is control dependent on X
 – label each child edge with required condition
 – group all children with same condition under region node

• Program dependence graph: super-impose dataflow graph (in SSA form or not) on top of the control dependence graph
Example

1. $y := p + q$
2. $x > 0$

3. $a := x \times y$
4. $a := y - 2$

5. $w := y \div q$
6. $x > 0$

7. $b := 1 \ll w$

8. $r := a \% b$

Control dependence relation:
3 depends on 2
4 depends on 2
7 depends on 6
Example

Control dependence relation
3 depends on 2
4 " " 2
7 " " 6
Another example
Another example
Another example

```
① \( i_1 := 0; \)
② while ... do
③ \( i_3 := \phi(i_1, i_2); \)
④ \( x := i_3 * b; \)
⑤ if ... then
⑥ \( w := c * c; \)
⑦ \( Y_1 := 9 + w; \)
else
⑧ \( Y_2 := 9; \)
end
⑨ \( Y_3 := \phi(Y_1, Y_2); \)
⑩ \( \text{print}(y_3); \)
⑪ \( i_2 := i_3 + 1; \)
end
```
Summary of Control Dependence Graph

• More flexible way of representing control-depencies than CFG (less constraining)

• Makes code motion a local transformation

• However, much harder to convert back to an executable form
Course summary so far

• Dataflow analysis
 – flow functions, lattice theoretic framework, optimistic iterative analysis, precision, MOP

• Advanced Program Representations
 – SSA, CDG, PDG

• Along the way, several analyses and opts
 – reaching defns, const prop & folding, available exprs & CSE, liveness & DAE, loop invariant code motion

• Pointer analysis
 – Andersen, Steensgaard, and long the way: flow-insensitive analysis

• Next: dealing with procedures