Program Representations

Representing programs

- **Goals**
 - analysis is easy and effective
 - just a few cases to handle
 - direct link related things
 - transformations are easy to perform
 - general, across input languages and target machines

- **Additional goals**
 - compact in memory
 - easy to translate to and from
 - tracks info from source through to binary, for source-level debugging, profiling, typed binaries
 - extensible (new options, targets, language features)
 - displayable

Option 1: high-level syntax based IR

- Represent source-level structures and expressions directly
- Example: Abstract Syntax Tree

```
for i := 1 to 10 do
  a[i] := b[i] * 5;
end
```

Option 2: low-level IR

- Translate input programs into low-level primitive chunks, often close to the target machine
- Examples: assembly code, virtual machine code (e.g. stack machines), three-address code, register-transfer language (RTL)

<table>
<thead>
<tr>
<th>Standard RTL instrs:</th>
</tr>
</thead>
<tbody>
<tr>
<td>assignment x := y;</td>
</tr>
<tr>
<td>unary op x := op y;</td>
</tr>
<tr>
<td>binary op x := y op z;</td>
</tr>
<tr>
<td>load x := *(p + o);</td>
</tr>
<tr>
<td>store *(p + o) := x;</td>
</tr>
<tr>
<td>call x := f(...)();</td>
</tr>
<tr>
<td>unary compare op x ?</td>
</tr>
<tr>
<td>binary compare x op y ?</td>
</tr>
</tbody>
</table>

Option 2: low-level IR

```
for i := 1 to 10 do
  a[i] := b[i] * 5;
end
```

Control flow graph containing RTL instructions:
Comparison

• Advantages of high-level rep
 – analysis can exploit high-level knowledge of constructs
 – easy to map to source code (debugging, profiling)
• Advantages of low-level rep
 – can do low-level, machine specific reasoning
 – can be language-independent
• Can mix multiple reps in the same compiler

Components of representation

• Control dependencies: sequencing of operations
 – evaluation of if & then
 – side-effects of statements occur in right order
• Data dependencies: flow of definitions from defs to uses
 – operands computed before operations
• Ideal: represent just dependencies that matter
 – dependencies constrain transformations
 – fewest dependences ⇒ flexibility in implementation

Control dependencies

• Option 1: high-level representation
 – control implicit in semantics of AST nodes
• Option 2: control flow graph (CFG)
 – nodes are individual instructions
 – edges represent control flow between instructions
• Options 2b: CFG with basic blocks
 – basic block: sequence of instructions that don’t have any branches, and that have a single entry point
 – BB can make analysis more efficient: compute flow functions for an entire BB before start of analysis

Data dependencies

• Simplest way to represent data dependencies: def/use chains

Control dependencies

• CFG does not capture loops very well
 – Some fancier options include:
 – the Control Dependence Graph
 – the Program Dependence Graph
• More on this later. Let’s first look at data dependencies
Def/use chains

- Directly captures dataflow
 - works well for things like constant prop
- But...
- Ignores control flow
 - misses some opt opportunities since conservatively considers all paths
 - not executable by itself (for example, need to keep CFG around)
 - not appropriate for code motion transformations
- Must update after each transformation
- Space consuming

SSA

- Static Single Assignment
 - invariant: each use of a variable has only one def

SSA

- Create a new variable for each def
- Insert \(\phi \) pseudo-assignments at merge points
- Adjust uses to refer to appropriate new names
- Question: how can one figure out where to insert \(\phi \) nodes using a liveness analysis and a reaching defns analysis.

Converting back from SSA

- Semantics of \(x_3 := \phi(x_1, x_2) \)
 - set \(x_3 \) to \(x_i \) if execution came from \(i \)th predecessor
- How to implement \(\phi \) nodes?

Converting back from SSA

- Semantics of \(x_3 := \phi(x_1, x_2) \)
 - set \(x_3 \) to \(x_i \) if execution came from \(i \)th predecessor
- How to implement \(\phi \) nodes?
 - Insert assignment \(x_3 := x_1 \) along 1st predecessor
 - Insert assignment \(x_3 := x_2 \) along 2nd predecessor
- If register allocator assigns \(x_1 \), \(x_2 \) and \(x_3 \) to the same register, these moves can be removed
 - \(x_1 \ldots x_n \) usually have non-overlapping lifetimes, so this kind of register assignment is legal
Recall: Common Sub-expression Elim

- Want to compute when an expression is available in a var
- Domain:

\[\{ x \to E, \gamma \to E_\gamma, \zeta \to E_\zeta \} \]

Recall: CSE Flow functions

\[F_{x := Y \text{ op } Z}(\text{in}) = \text{in} \setminus \{ X \to ^* \} \]

\[\{ \text{out} \} \cup \{ X \to Y \text{ op } Z \mid X = Y \land X \neq Z \} \]

\[F_{x := Y}(\text{in}) = \text{in} \setminus \{ X \to ^* \} \]

\[\{ \text{out} \} \cup \{ X \to E \mid Y \to E \in \text{in} \} \]

Example

\[i := a + b \]
\[x := i \times 4 \]
\[j := i \]
\[i := c \]
\[z := j \times 4 \]

\[m := b + a \]
\[w := 4 \times m \]

Example

\[i := a + b \]
\[x := i \times 4 \]
\[y := i \times 4 \]
\[i := i + 1 \]
\[m := b + a \]
\[w := 4 \times m \]

Example

\[i := a + b \]
\[x := i \times 4 \]
\[j := i \]
\[i := c \]
\[z := j \times 4 \]

\[m := b + a \]
\[w := 4 \times m \]

Problems

- \[z := j \times 4 \] is not optimized to \[z := x \], even though \[x \] contains the value \[j \times 4 \]
- \[m := b + a \] is not optimized, even though \[a + b \] was already computed
- \[w := 4 \times m \] it not optimized to \[w := x \], even though \[x \] contains the value \[4 \times m \]

Problems: more abstractly

- Available expressions overly sensitive to name choices, operand orderings, renamings, assignments
- Use SSA: distinct values have distinct names
- Do copy prop before running available exprs
- Adopt canonical form for commutative ops
Example in SSA

\[
\begin{align*}
X := Y \text{ op } Z \\
in &\quad F_{X := Y \text{ op } Z}(in) = \\
\text{out} &\quad F_{X := \phi(Y,Z)}(in_0, in_1) =
\end{align*}
\]

Example in SSA

\[
\begin{align*}
X := Y \text{ op } Z \\
in &\quad F_{X := Y \text{ op } Z}(in) = \{ X \rightarrow Y \text{ op } Z \}
\end{align*}
\]

\[
\begin{align*}
X := \phi(Y,Z) \\
in &\quad F_{X := \phi(Y,Z)}(in_0, in_1) = (in_0 \cap in_1) \cup \\
&\quad \{ X \rightarrow E \mid Y \rightarrow E \in in_0 \land Z \rightarrow E \in in_1 \}
\end{align*}
\]

Example in SSA

\[
\begin{align*}
\hat{i} := a + b \\
x := \hat{i} \times 4 \\
\hat{j} := \hat{i} \\
\hat{i} := c \\
x := \hat{j} \times 4 \\
i := b + a \\
w := a \times 4
\end{align*}
\]

Example in SSA

\[
\begin{align*}
\hat{i}_1 := a_1 + b_1 \\
x_1 := \hat{i}_1 \times 4 \\
\hat{j}_1 := \hat{i}_1 \\
\hat{i}_2 := c_1 \\
x_2 := \hat{j}_1 \times 4 \\
i_1 := b_1 \\
w_1 := a_1 \times 4
\end{align*}
\]

What about pointers?

- Pointers complicate SSA. Several options.
 - Option 1: don’t use SSA for pointed to variables
 - Option 2: adapt SSA to account for pointers
 - Option 3: define src language so that variables cannot be pointed to (eg: Java)

SSA helps us with CSE

- Let’s see what else SSA can help us with
 - Loop-invariant code motion
Loop-invariant code motion

- Two steps: analysis and transformations

- Step 1: find invariant computations in loop
 - invariant: computes same result each time evaluated

- Step 2: move them outside loop
 - to top if used within loop: code hoisting
 - to bottom if used after loop: code sinking

Example

```
x := 3
p := w + y
x := x + 1
q := q + 1
z := x * y
q := y * y
w := y + 2
y := 4
y := 5
w := w + 5
```

Detecting loop invariants

- An expression is invariant in a loop L iff:
 - (base cases)
 - it's a constant
 - it's a variable use, all of whose defs are outside of L
 - (inductive cases)
 - it's a pure computation all of whose args are loop-invariant
 - it's a variable use with only one reaching def, and the rhs of that def is loop-invariant

Computing loop invariants

- Option 1: iterative dataflow analysis
 - optimistically assume all expressions loop-invariant, and propagate

- Option 2: build def/use chains
 - follow chains to identify and propagate invariant expressions

- Option 3: SSA
 - like option 2, but using SSA instead of def/use chains

Example using def/use chains

```
x := 3
y := 4
y := 5
x := x + 1
q := q + 1
```

- An expression is invariant in a loop L iff:
 - (base cases)
 - it's a constant
 - it's a variable use, all of whose defs are outside of L
 - (inductive cases)
 - it's a pure computation all of whose args are loop-invariant
 - it's a variable use with only one reaching def, and the rhs of that def is loop-invariant
Example using def/use chains

• An expression is invariant in a loop L iff:
 (base cases)
 – it's a constant
 – it's a variable use, all of whose defs are outside of L
 (inductive cases)
 – it's a pure computation all of whose args are loop-invariant
 – it's a variable use with only one reaching def, and the rhs of that def is loop-invariant

Loop invariant detection using SSA

• An expression is invariant in a loop L iff:
 (base cases)
 – it's a constant
 – it's a variable use, all of whose single defs are outside of L
 (inductive cases)
 – it's a pure computation all of whose args are loop-invariant
 – it's a variable use whose single reaching def, and the rhs of that def is loop-invariant
 • ϕ functions are not pure

Example using SSA

• An expression is invariant in a loop L iff:
 (base cases)
 – it's a constant
 – it's a variable use, all of whose single defs are outside of L
 (inductive cases)
 – it's a pure computation all of whose args are loop-invariant
 – it's a variable use whose single reaching def, and the rhs of that def is loop-invariant
 • ϕ functions are not pure

Example using SSA and preheader

• An expression is invariant in a loop L iff:
 (base cases)
 – it's a constant
 – it's a variable use, all of whose single defs are outside of L
 (inductive cases)
 – it's a pure computation all of whose args are loop-invariant
 – it's a variable use whose single reaching def, and the rhs of that def is loop-invariant
 • ϕ functions are not pure

Summary: Loop-invariant code motion

• Two steps: analysis and transformations
 • Step1: find invariant computations in loop
 – invariant: computes same result each time evaluated
 • Step 2: move them outside loop
 – to top if used within loop: code hoisting
 – to bottom if used after loop: code sinking

Code motion

• Say we found an invariant computation, and we want to move it out of the loop (to loop pre-header)
 • When is it legal?
 • Need to preserve relative order of invariant computations to preserve data flow among move statements
• Need to preserve relative order between invariant computations and other computations
Example

```
x := 0
y := 1
i := 0
```

```
x := a * b
y := x / z
i := i + 1
```

```
x := 0
y := 1
i := 0
```

Lesson from example: domination restriction

- To move statement S to loop pre-header, S must \textbf{dominate} all loop exits
 \[A \text{ dominates } B \text{ when all paths to } B \text{ first pass through } A \]

- Otherwise may execute S when never executed otherwise

- If S is pure, then can relax this constraint at cost of possibly slowing down the program

Domination restriction in for loops

Avoiding domination restriction

- Domination restriction strict
 - Nothing inside branch can be moved
 - Nothing after a loop exit can be moved

- Can be circumvented through loop normalization
 - while-do \Rightarrow if-do-while

Another example

```
x := 5
i := 0
```

```
x := x + 1
```

```
x := 0
```

```
i := i + 1
```

```
i < N ?
```

```
\ldots \& \ldots
```
Data dependence restriction

• To move S: $z := x \text{ op } y$:
 S must be the only assignment to z in loop, and no use of z in loop reached by any def other than S

• Otherwise may reorder defs/uses

Avoiding data restriction

Avoiding data restriction

Summary of Data dependencies

• We’ve seen SSA, a way to encode data dependencies better than just def/use chains
 – makes CSE easier
 – makes loop invariant detection easier
 – makes code motion easier

• Now we move on to looking at how to encode control dependencies

Control Dependencies

• A node (basic block) Y is control-dependent on another X iff X determines whether Y executes
 – there exists a path from X to Y s.t. every node in the path other than X and Y is post-dominated by Y
 – X is not post-dominated by Y
Control Dependence Graph

- Control dependence graph: Y descendent of X iff Y is control dependent on X
 - label each child edge with required condition
 - group all children with same condition under region node
- Program dependence graph: super-impose dataflow graph (in SSA form or not) on top of the control dependence graph
Another example

Summary of Control Dependence Graph

- More flexible way of representing control-depencies than CFG (less constraining)
- Makes code motion a local transformation
- However, much harder to convert back to an executable form

Course summary so far

- Dataflow analysis
 - flow functions, lattice theoretic framework, optimistic iterative analysis, precision, MOP
- Advanced Program Representations
 - SSA, CDG, PDG
- Along the way, several analyses and opts
 - reaching defns, const prop & folding, available exprs & CSE, liveness & DAE, loop invariant code motion
- Pointer analysis
 - Andersen, Steensgaard, and long the way: flow-insensitive analysis
- Next: dealing with procedures