Program Representations

Representing programs

• Goals
 – analysis is easy and effective
 – just a few cases to handle
 – directly link related things
 – transformations are easy to perform
 – general, across input languages and target machines

• Additional goals
 – compact in memory
 – easy to translate to and from
 – tracks info from source through to binary, for source-level debugging, profiling, typed binaries
 – extensible (new opts, targets, language features)
 – displayable

Option 1: high-level syntax based IR

• Represent source-level structures and expressions directly
• Example: Abstract Syntax Tree

Option 2: low-level IR

• Translate input programs into low-level primitive chunks, often close to the target machine
• Examples: assembly code, virtual machine code (e.g. stack machines), three-address code, register-transfer language (RTL)

• Standard RTL instrs:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>RTL Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>assignment</td>
<td>x := y;</td>
</tr>
<tr>
<td>unary op</td>
<td>x := op y1</td>
</tr>
<tr>
<td>binary op</td>
<td>x := y op z</td>
</tr>
<tr>
<td>address of</td>
<td>p := @(y)</td>
</tr>
<tr>
<td>load</td>
<td>x := *(p + o)</td>
</tr>
<tr>
<td>store</td>
<td>*(p + o) := x</td>
</tr>
<tr>
<td>call</td>
<td>x := f(...)</td>
</tr>
<tr>
<td>unary compare</td>
<td>op x ?</td>
</tr>
<tr>
<td>binary compare</td>
<td>x op y ?</td>
</tr>
</tbody>
</table>

Option 2: low-level IR

Source:
\[
\text{for } i := 1 \text{ to } 10 \text{ do}
\]
\[
s[i] := b[i] \ast 5;
\]

Control flow graph containing RTL instructions:
Comparison

- Advantages of high-level rep
 - analysis can exploit high-level knowledge of constructs
 - easy to map to source code (debugging, profiling)
- Advantages of low-level rep
 - can do low-level, machine specific reasoning
 - can be language-independent
- Can mix multiple reps in the same compiler

Components of representation

- Control dependencies: sequencing of operations
 - evaluation of if & then
 - side-effects of statements occur in right order
- Data dependencies: flow of definitions from defs to uses
 - operands computed before operations
- Ideal: represent just dependencies that matter
 - dependencies constrain transformations
 - fewest dependences => flexibility in implementation

Control dependencies

- Option 1: high-level representation
 - control implicit in semantics of AST nodes
- Option 2: control flow graph (CFG)
 - nodes are individual instructions
 - edges represent control flow between instructions
- Options 2b: CFG with basic blocks
 - basic block: sequence of instructions that don’t have any branches, and that have a single entry point
 - BB can make analysis more efficient: compute flow functions for an entire BB before start of analysis

Control dependencies

- CFG does not capture loops very well

- Some fancier options include:
 - the Control Dependence Graph
 - the Program Dependence Graph

- More on this later. Let’s first look at data dependencies

Data dependencies

- Simplest way to represent data dependencies: def/use chains

... x ... x := x + y

... y ... y := y + 1
Def/use chains
• Directly captures dataflow
 – works well for things like constant prop
• But...
• Ignores control flow
 – misses some opt opportunities since conservatively considers all paths
 – not executable by itself (for example, need to keep CFG around)
 – not appropriate for code motion transformations
• Must update after each transformation
• Space consuming

SSA
• Static Single Assignment
 – invariant: each use of a variable has only one def

Converting back from SSA
• Semantics of $x_3 := \phi(x_1, x_2)$
 – set x_3 to x_i if execution came from ith predecessor
• How to implement ϕ nodes?

SSA
• Create a new variable for each def
• Insert ϕ pseudo-assignments at merge points
• Adjust uses to refer to appropriate new names

• Question: how can one figure out where to insert ϕ nodes using a liveness analysis and a reaching defns analysis.

Converting back from SSA
• Semantics of $x_3 := \phi(x_1, x_2)$
 – set x_3 to x_i if execution came from ith predecessor
• How to implement ϕ nodes?
 – Insert assignment $x_3 := x_1$ along 1st predecessor
 – Insert assignment $x_3 := x_2$ along 2nd predecessor
• If register allocator assigns x_1, x_2 and x_3 to the same register, these moves can be removed
 – $x_1 \ldots x_n$ usually have non-overlapping lifetimes, so this kind of register assignment is legal
Recall: Common Sub-expression Elim

- Want to compute when an expression is available in a var
- Domain:
 \[\{ X \rightarrow E \mid \forall E, E \in E_{opp} \} \]

Example

\[\begin{align*}
 i &:= a + b \\
 x &:= i \times 4 \\
 j &:= i \\
 l &:= c \\
 z &:= j \times 4 \\
 m &:= b + a \\
 w &:= 4 \times m
\end{align*} \]

Problems

- \(z := j \times 4 \) is not optimized to \(z := x \), even though \(x \) contains the value \(j \times 4 \)
- \(m := b + a \) is not optimized, even though \(a + b \) was already computed
- \(w := 4 \times m \) is not optimized to \(w := x \), even though \(x \) contains the value \(4 \times m \)

Recall: CSE Flow functions

\[\begin{align*}
 F_{X := Y \text{ op } Z} \text{ (in)} &= \text{in} \setminus \{ X \rightarrow \text{Y op Z} \} \\
 &= \text{in} \setminus \{ X \rightarrow \text{Y op Z} \}
\end{align*} \]

Example

\[\begin{align*}
 i &:= a + b \\
 x &:= i \times 4 \\
 y &:= i \times 4 \\
 i &:= i + 1 \\
 m &:= b + a \\
 w &:= 4 \times m \\
 j &:= i \\
 i &:= c \\
 z &:= j \times 4
\end{align*} \]

Problems: more abstractly

- Available expressions overly sensitive to name choices, operand orderings, renamings, assignments
- Use SSA: distinct values have distinct names
- Do copy prop before running available exprs
- Adopt canonical form for commutative ops
Example in SSA

\[
X := Y \text{ op } Z
\]

\[
F_{X := Y \text{ op } Z}(in) =
\]

Example in SSA

\[
X := \phi(Y, Z)
\]

\[
F_{X := \phi(Y, Z)}(in_0, in_1) =
\]

\[
\{ X \to E \mid Y \to E \in in_0 \land Z \to E \in in_1 \}
\]

Example in SSA

\[
i := a + b
\]

\[
x := i \text{ * } 4
\]

\[
y := i \text{ * } 4
\]

\[
i := i + 1
\]

\[
m := b + a
\]

\[
w := 4 \text{ * } w
\]

Example in SSA

\[
l_1 := a + b
\]

\[
x := l_1 \text{ * } 4
\]

\[
y := l_1 \text{ * } 4
\]

\[
l := l_1 + 1
\]

\[
i := 4 + a
\]

\[
x := 4 \text{ * } a
\]

What about pointers?

- Pointers complicate SSA. Several options.

 - Option 1: don’t use SSA for pointed to variables
 - Option 2: adapt SSA to account for pointers
 - Option 3: define src language so that variables cannot be pointed to (eg: Java)

SSA helps us with CSE

- Let’s see what else SSA can help us with

 - Loop-invariant code motion
Loop-invariant code motion

- Two steps: analysis and transformations

- Step 1: find invariant computations in loop
 - invariant: computes same result each time evaluated

- Step 2: move them outside loop
 - to top if used within loop: code hoisting
 - to bottom if used after loop: code sinking

Example

```
x := 3
y := 4
p := w + y
x := x + 1
q := q + 1
z := x * y
q := y * y
w := y + 2
```

Detecting loop invariants

- An expression is invariant in a loop L iff:
 (base cases)
 - it’s a constant
 - it’s a variable use, all of whose defs are outside of L
 (inductive cases)
 - it’s a pure computation all of whose args are loop-invariant
 - it’s a variable use with only one reaching def, and the rhs of that def is loop-invariant

Computing loop invariants

- Option 1: iterative dataflow analysis
 - optimistically assume all expressions loop-invariant, and propagate

- Option 2: build def/use chains
 - follow chains to identify and propagate invariant expressions

- Option 3: SSA
 - like option 2, but using SSA instead of def/use chains

Example using def/use chains

```
x := 3
y := 4
p := w + y
x := x + 1
q := q + 1
```

• An expression is invariant in a loop L iff:
 (base cases)
 - it’s a constant
 - it’s a variable use, all of whose defs are outside of L
 (inductive cases)
 - it’s a pure computation all of whose args are loop-invariant
 - it’s a variable use with only one reaching def, and the rhs of that def is loop-invariant
Example using def/use chains

An expression is invariant in a loop L iff:

(base cases)
- it's a constant
- it's a variable use, all of whose defs are outside of L

(inductive cases)
- it's a pure computation all of whose args are loop-invariant
- it's a variable use with only one reaching def, and the rhs of that def is loop-invariant

Example using SSA

An expression is invariant in a loop L iff:

(base cases)
- it's a constant
- it's a variable use, all of whose single defs are outside of L

(inductive cases)
- it's a pure computation all of whose args are loop-invariant
- it's a variable use whose single reaching def, and the rhs of that def is loop-invariant

• \(\phi \) functions are not pure

Example using SSA and preheader

An expression is invariant in a loop L iff:

(base cases)
- it's a constant
- it's a variable use, all of whose single defs are outside of L

(inductive cases)
- it's a pure computation all of whose args are loop-invariant
- it's a variable use whose single reaching def, and the rhs of that def is loop-invariant

• \(\phi \) functions are not pure

Summary: Loop-invariant code motion

- Two steps: analysis and transformations

 - Step 1: find invariant computations in loop
 - invariant: computes same result each time evaluated

 - Step 2: move them outside loop
 - to top if used within loop: code hoisting
 - to bottom if used after loop: code sinking

Code motion

- Say we found an invariant computation, and we want to move it out of the loop (to loop preheader)
- When is it legal?
- Need to preserve relative order of invariant computations to preserve data flow among move statements
- Need to preserve relative order between invariant computations and other computations
Example

```
x := a * b
y := x / z
i := i + 1

z != 0 &&
i < 100 ?
```

Lesson from example: domination restriction

- To move statement S to loop pre-header, S must dominate all loop exits

 A dominates B when all paths to B first pass through A

- Otherwise may execute S when never executed otherwise

- If S is pure, then can relax this constraint at cost of possibly slowing down the program

Domination restriction in for loops

Avoiding domination restriction

- Domination restriction strict
 - Nothing inside branch can be moved
 - Nothing after a loop exit can be moved

- Can be circumvented through loop normalization
 - while-do => if-do-while

Another example
Data dependence restriction

- To move S: \(z := x \text{ op } y \):
 S must be the only assignment to \(z \) in loop, and
 no use of \(z \) in loop reached by any def other than S

- Otherwise may reorder def/uses

Avoiding data restriction

```
\begin{align*}
x_1 &:= 5 \\
i_1 &:= 0 \\
x_2 := \phi(x_1, x_2) \\
i_2 := \phi(i_1, i_2) \\
x := x + 1 \\
i := i + 1 \\
i < N ?
\end{align*}
```

- Restriction unnecessary in SSA!!!
- Implementation of phi nodes as moves will cope with re-ordered def/uses

Summary of Data dependencies

- We’ve seen SSA, a way to encode data dependencies better than just def/use chains
 - makes CSE easier
 - makes loop invariant detection easier
 - makes code motion easier

- Now we move on to looking at how to encode control dependencies

Control Dependencies

- A node (basic block) Y is control-dependent on another X iff X determines whether Y executes
 - there exists a path from X to Y s.t. every node in the path other than X and Y is post-dominated by Y
 - X is not post-dominated by Y

Control Dependencies

- A node (basic block) Y is control-dependent on another X iff X determines whether Y executes
 - there exists a path from X to Y s.t. every node in the path other than X and Y is post-dominated by Y
 - X is not post-dominated by Y
Control Dependence Graph

- Control dependence graph: Y descendent of X iff Y is control dependent on X
 - label each child edge with required condition
 - group all children with same condition under region node

- Program dependence graph: super-impose dataflow graph (in SSA form or not) on top of the control dependence graph

Example

Another example
Another example

Another example

Summary of Control Dependence Graph

• More flexible way of representing control-depencies than CFG (less constraining)

• Makes code motion a local transformation

• However, much harder to convert back to an executable form

Course summary so far

• Dataflow analysis
 – flow functions, lattice theoretic framework, optimistic iterative analysis, precision, MOP

• Advanced Program Representations
 – SSA, CDG, PDG

• Along the way, several analyses and opts
 – reaching defns, const prop & folding, available exprs & CSE, liveness & DAE, loop invariant code motion

• Pointer analysis
 – Andersen, Steensgaard, and long the way: flow-sensitive analysis

• Next: dealing with procedures