Pointer analysis
Pointer Analysis

• Outline:
 – What is pointer analysis
 – Intraprocedural pointer analysis
 – Interprocedural pointer analysis
 • Andersen and Steensgaard
Pointer and Alias Analysis

- Aliases: two expressions that denote the same memory location.

- Aliases are introduced by:
 - pointers
 - call-by-reference
 - array indexing
 - C unions
Useful for what?

• Improve the precision of analyses that require knowing what is modified or referenced (eg const prop, CSE …)

• Eliminate redundant loads/stores and dead stores.

 \[
 \begin{align*}
 &x := *p; \\
 &\ldots \\
 &y := *p; \quad // \text{replace with } y := x? \\
 &*x := \ldots; \\
 &\quad // \text{is } *x \text{ dead?}
 \end{align*}
 \]

• Parallelization of code
 – can recursive calls to quick_sort be run in parallel? Yes, provided that they reference distinct regions of the array.

• Identify objects to be tracked in error detection tools

 \[
 \begin{align*}
 &x.lock(); \\
 &\ldots \\
 &y.unlock(); \quad // \text{same object as } x?
 \end{align*}
 \]
Kinds of alias information

• Points-to information (must or may versions)
 – at program point, compute a set of pairs of the form $p \rightarrow x$, where p points to x.
 – can represent this information in a **points-to graph**

• Alias pairs
 – at each program point, compute the set of all pairs (e_1, e_2) where e_1 and e_2 must/may reference the same memory.

• Storage shape analysis
 – at each program point, compute an abstract description of the pointer structure.
Intraprocedural Points-to Analysis

- Want to compute may-points-to information

Lattice:

\[D = 2 \left\{ x \rightarrow y \mid x \in \text{Var}, y \in \text{Var} \right\} \]

\[U = \emptyset \]

\[\subseteq \]

\[\emptyset \]

\[T = \left\{ x \rightarrow y \mid x \in \text{Var}, y \in \text{Var} \right\} \]
Flow functions

\[F_x := k \text{ (in)} = \]

\[F_x := a + b \text{ (in)} = \]
Flow functions

\[F_{x := y}(\text{in}) = \]

\[F_{x := \&y}(\text{in}) = \]
Flow functions

\[F_x := *y(in) = \]

\[F_{*x} := y(in) = \]
Intraprocedural Points-to Analysis

- Flow functions:

\[
\begin{align*}
 \text{kill}(x) &= \bigcup_{v \in \text{Vars}} \{(x, v)\} \\
 F_{x:=k}(S) &= S - \text{kill}(x) \\
 F_{x:=a+b}(S) &= S - \text{kill}(x) \\
 F_{x:=y}(S) &= S - \text{kill}(x) \cup \{(x, v) \mid (y, v) \in S\} \\
 F_{x:=y}(S) &= S - \text{kill}(x) \cup \{(x, y)\} \\
 F_{x:=y}(S) &= S - \text{kill}(x) \cup \{(x, v) \mid \exists t \in \text{Vars}.[(y, t) \in S \land (t, v) \in S]\} \\
 F_{x:=y}(S) &= \text{let } V := \{v \mid (x, v) \in S\} \text{ in } \\
 & \quad S - (\text{if } V = \{v\} \text{ then } \text{kill}(v) \text{ else } \emptyset) \\
 & \quad \cup \{(v, t) \mid v \in V \land (y, t) \in S\}
\end{align*}
\]
Pointers to dynamically-allocated memory

• Handle statements of the form: \(x := \text{new } T \)

• One idea: generate a new variable each time the new statement is analyzed to stand for the new location:

\[
F_{x:=\text{new}} T(S) = S - \text{kill}(x) \cup \{(x, \text{newvar}())\}
\]
Example

\[
\begin{align*}
l &:= \text{new Cons} \\
p &:= l \\
t &:= \text{new Cons} \\
*p &:= t \\
p &:= t
\end{align*}
\]
Example solved

```
l := new Cons
```

```
p := l
```

```
t := new Cons
```

```
*p := t
```

```
p := t
```

```
V1
  |
  | l
  |
V2
  |
  | p
  |
V3
  |
  |*p
  |
  | t
  |
```

```
V1
  |
  | l
  |
V2
  |
  | p
  |
V3
  |
  | t
  |
```

```
V1
  |
  | l
  |
V2
  |
  | p
  |
V3
  |
  | t
  |
```

```
V1
  |
  | l
  |
V2
  |
  | p
  |
V3
  |
  | t
  |
```

```
V1
  |
  | l
  |
V2
  |
  | p
  |
V3
  |
  | t
  |
```

```
V1
  |
  | l
  |
V2
  |
  | p
  |
V3
  |
  | t
  |
```

```
V1
  |
  | l
  |
V2
  |
  | p
  |
V3
  |
  | t
  |
```

```
V1
  |
  | l
  |
V2
  |
  | p
  |
V3
  |
  | t
  |
```
What went wrong?

• Lattice infinitely tall!

• We were essentially running the program

• Instead, we need to summarize the infinitely many allocated objects in a finite way

• **New Idea**: introduce summary nodes, which will stand for a whole class of allocated objects.
What went wrong?

- Example: For each new statement with label L, introduce a summary node \(\text{loc}_L \), which stands for the memory allocated by statement L.

\[
F_L: \ x := \text{new} \ T(S) = S - \text{kill}(x) \cup \{(x, \text{loc}_L)\}
\]

- Summary nodes can use other criterion for merging.
Example revisited

S1: \(l := \text{new Cons} \)

\[p := l \]

S2: \(t := \text{new Cons} \)

\[*p := t \]

\[p := t \]
Example revisited & solved

S1: \(l := \text{new Cons} \)

\[\begin{align*}
\text{Iter 1} & \quad \begin{array}{c}
\text{Iter 2} & \quad \begin{array}{c}
\text{Iter 3}
\end{array}
\end{array}
\end{align*} \]

p := l

* p := t

p := t
Array aliasing, and pointers to arrays

• Array indexing can cause aliasing:
 – \(a[i] \) aliases \(b[j] \) if:
 • \(a \) aliases \(b \) and \(i = j \)
 • \(a \) and \(b \) overlap, and \(i = j + k \), where \(k \) is the amount of overlap.

• Can have pointers to elements of an array
 – \(p := &a[i]; \ldots; p++; \)

• How can arrays be modeled?
 – Could treat the whole array as one location.
 – Could try to reason about the array index expressions: array dependence analysis.
Fields

• Can summarize fields using per field summary
 – for each field F, keep a points-to node called F that summarizes all possible values that can ever be stored in F

• Can also use allocation sites
 – for each field F, and each allocation site S, keep a points-to node called (F, S) that summarizes all possible values that can ever be stored in the field F of objects allocated at site S.
Summary

• We just saw:
 – intraprocedural points-to analysis
 – handling dynamically allocated memory
 – handling pointers to arrays

• But, intraprocedural pointer analysis is not enough.
 – Sharing data structures across multiple procedures is one the big benefits of pointers: instead of passing the whole data structures around, just pass pointers to them (eg C pass by reference).
 – So pointers end up pointing to structures shared across procedures.
 – If you don’t do an interproc analysis, you’ll have to make conservative assumptions functions entries and function calls.
Conservative approximation on entry

• Say we don’t have interprocedural pointer analysis.

• What should the information be at the input of the following procedure:

```c
    global g;
    void p(x,y) {
        ...
    }
```
Conservative approximation on entry

• Here are a few solutions:

```c
global g;
void p(x,y) {
    ...
}
```

• They are all very conservative!

• We can try to do better.
Interprocedural pointer analysis

- Main difficulty in performing interprocedural pointer analysis is scaling

- One can use a top-down summary based approach (Wilson & Lam 95), but even these are hard to scale
Example revisited

- Cost:
 - space: store one fact at each prog point
 - time: iteration

S1: \(l := \text{new Cons} \)

\[
\begin{align*}
S1: & \quad l := \text{new Cons} \\
p := l
\end{align*}
\]

S2: \(t := \text{new Cons} \)

\[
\begin{align*}
S2: & \quad t := \text{new Cons} \\
*p := t
\end{align*}
\]

\[
\begin{align*}
p := t
\end{align*}
\]
New idea: store one dataflow fact

• Store one dataflow fact for the whole program
• Each statement updates this one dataflow fact
 – use the previous flow functions, but now they take the whole program dataflow fact, and return an updated version of it.
• Process each statement once, ignoring the order of the statements
• This is called a flow-insensitive analysis.
Flow insensitive pointer analysis

S1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t
Flow insensitive pointer analysis

S1: \(l := \text{new Cons} \)

\[p := l \]

S2: \(t := \text{new Cons} \)

\[*p := t \]

\[p := t \]
Flow sensitive vs. insensitive

S1: \(l := \text{new Cons} \)

\[p := l\]

S2: \(t := \text{new Cons} \)

\[*p := t\]

\[p := t\]

Flow-sensitive Soln

Flow-insensitive Soln
What went wrong?

• What happened to the link between p and S1?
 – Can’t do strong updates anymore!
 – Need to remove all the kill sets from the flow functions.

• What happened to the self loop on S2?
 – We still have to iterate!
Flow insensitive pointer analysis: fixed

S1: \(l := \text{new Cons} \)

\[p := l \]

S2: \(t := \text{new Cons} \)

\[*p := t \]

\[p := t \]
Flow insensitive pointer analysis: fixed

S1: \(l := \text{new Cons} \)

\[p := l \]

S2: \(t := \text{new Cons} \)

\[*p := t \]

\[p := t \]

This is Andersen’s algorithm ’94

Iter 1

Iter 2

Iter 3

Final result

This is Andersen’s algorithm ’94

Iter 1

Iter 2

Iter 3

Final result
Flow sensitive vs. insensitive, again

S1: \(l := \text{new Cons} \)

\(p := l \)

S2: \(t := \text{new Cons} \)

\(*p := t \)

\(p := t \)

Flow-sensitive Soln

Flow-insensitive Soln
Flow insensitive loss of precision

- Flow insensitive analysis leads to loss of precision!

```cpp
main() {
    x := &y;

    ...  
    \[\text{Flow insensitive analysis tells us that } x \text{ may point to } z \text{ here!}\]

    x := &z;
}
```

- However:
 - uses less memory (memory can be a big bottleneck to running on large programs)
 - runs faster
In Class Exercise!

S1: \(p := \text{new Cons} \)

S2: \(q := \text{new Cons} \)

\(*p = q \)

\(r = &q \)

\(*q = r \)

\(*q = p \)

\(s = r \)

\(s = p \)

\(*r = s \)
In Class Exercise! solved

S1: \(p := \text{new Cons} \)

S2: \(q := \text{new Cons} \)

\(*p = q \)

\(r = &q \)

\(*q = r \)

\(*q = p \)

\(s = r \)

\(s = p \)

\(*r = s \)
Worst case complexity of Andersen

Worst case: N^2 per statement, so at least N^3 for the whole program. Andersen is in fact $O(N^3)$.
New idea: one successor per node

- Make each node have only one successor.
- This is an invariant that we want to maintain.
More general case for \(*x = y \)
More general case for \(*x = y \)
Handling: $x = *y$
Handling: $x = *y$
Handling: $x = y$ (what about $y = x$?)

Handling: $x = &y$
Handling: $x = y$ (what about $y = x$?)

Handling: $x = \&y$
Our favorite example, once more!

S1: \(l := \text{new Cons} \)

\(p := l \)

S2: \(t := \text{new Cons} \)

\(*p := t \)

\(p := t \)
Our favorite example, once more!

1. $S1$: $l := \text{new Cons}$
2. $p := l$
3. $S2$: $t := \text{new Cons}$
4. $*p := t$
5. $p := t$
Flow insensitive loss of precision

S1: \(l := \text{new Cons} \)

\[
\begin{array}{c}
 p := l \\
 t := \text{new Cons} \\
 *p := t \\
 p := t
\end{array}
\]

Flow-sensitive Subset-based

Flow-insensitive Subset-based

Flow-insensitive Unification-based

\(l \rightarrow S1 \rightarrow S2 \)

\(p \rightarrow t \)

\(l \rightarrow S1 \rightarrow S2 \)

\(p \rightarrow t \)

\(l \rightarrow S1 \rightarrow S2 \)

\(p \rightarrow t \)

\(l \rightarrow S1 \rightarrow S2 \)

\(p \rightarrow t \)

\(l \rightarrow S1 \rightarrow S2 \)

\(p \rightarrow t \)

\(l \rightarrow S1 \rightarrow S2 \)

\(p \rightarrow t \)
Another example

bar() {
 ① i := &a;
 ② j := &b;
 ③ foo(&i);
 ④ foo(&j);
 // i pnts to what?
 *i := ...;
}

void foo(int* p) {
 printf("%d",*p);
}
Another example

```c
bar() {
  i := &a;
  j := &b;
  foo(&i);
  foo(&j);
  // i pnts to what?
  *i := ...;
}

void foo(int* p) {
  printf("%d",*p);
}
```
Almost linear time

- Time complexity: $O(N\alpha(N, N))$
- So slow-growing, it is basically linear in practice
- For the curious: node merging implemented using UNION-FIND structure, which allows set union with amortized cost of $O(\alpha(N, N))$ per op. Take CSE 202 to learn more!
In Class Exercise!

S1: \(p := \text{new Cons} \)

S2: \(q := \text{new Cons} \)

\(*p = q \)

\(r = &q \)

\(*q = r \)

\(*q = p \)

\(s = r \)

\(s = p \)

\(*r = s \)
In Class Exercise! solved

S1: \(p := \text{new Cons} \)

S2: \(q := \text{new Cons} \)

\(*p = q \)

\(r = \&q \)

\(*q = r \)

\(*q = p \)

\(s = r \)

\(s = p \)

\(*r = s \)

Steensgaard

Andersen
Advanced Pointer Analysis

- Combine flow-sensitive/flow-insensitive
- Clever data-structure design
- Context-sensitivity