Pointer analysis
Pointer Analysis

• Outline:
 – What is pointer analysis
 – Intraprocedural pointer analysis
 – Interprocedural pointer analysis
 • Andersen and Steensgaard
• Aliases: two expressions that denote the same memory location.

• Aliases are introduced by:
 – pointers
 – call-by-reference
 – array indexing
 – C unions
Useful for what?

- Improve the precision of analyses that require knowing what is modified or referenced (eg const prop, CSE ...)
- Eliminate redundant loads/stores and dead stores.

\[
\begin{align*}
 x & := *p; & *x & := ...; \\
 \ldots & & \text{\texttt{\# is *x dead?}} \\
 y & := *p; & \text{\texttt{\# replace with y := x?}}
\end{align*}
\]

- Parallelization of code
 - can recursive calls to quick_sort be run in parallel? Yes, provided that they reference distinct regions of the array.

- Identify objects to be tracked in error detection tools

\[
\begin{align*}
 x & .\text{lock}(); \\
 \ldots
\end{align*}
\]

\[
\begin{align*}
 y & .\text{unlock}(); & \text{\texttt{\# same object as x?}}
\end{align*}
\]
Kinds of alias information

• Points-to information (must or may versions)
 – at program point, compute a set of pairs of the form $p \rightarrow x$, where p points to x.
 – can represent this information in a **points-to graph**

 $\begin{align*}
 & p \\
 \quad & x \rightarrow z \\
 \quad & y
 \end{align*}$

• Alias pairs
 – at each program point, compute the set of all pairs (e_1, e_2) where e_1 and e_2 must/may reference the same memory.

• Storage shape analysis
 – at each program point, compute an abstract description of the pointer structure.

$p \rightarrow \begin{array}{c}
\hline
\hline
\end{array} \rightarrow \begin{array}{c}
\hline
\end{array}$
Intraprocedural Points-to Analysis

- Want to compute may-points-to information

\[D = 2 \{ x \rightarrow y \mid x \in \text{Var}, y \in \text{Var} \} \]

\[\mathcal{U} = \emptyset \]

\[\mathcal{F} = \leq \]

\[\mathcal{L} = \emptyset \]

\[T = \{ x \rightarrow y \mid x \in \text{Var}, y \in \text{Var} \} \]
Flow functions

\[
F_{x := k}(\text{in}) = \text{im} - \{x \rightarrow x\}
\]

\[
F_{x := a + b}(\text{in}) = \]

\[
\]

\[
\]

\[
\]
Flow functions

\[
F_{x := y}(\text{in}) = \text{in} - \{x \rightarrow *\} \cup \{x \rightarrow t \mid y \rightarrow t \in \text{in}\}
\]

\[
F_{x := \&y}(\text{in}) =
\]
Flow functions

\[F_x := *y \text{(in)} = \text{in} - \{x \to \text{*}\} \cup \{x \to z \} \cup \{y \to z \in \text{in} \} \]

\[F_{*x} := y \text{(in)} = \text{in} \cup \{a \to b \mid x \to a \in \text{in}, y \to b \in \text{in} \} \]
Intraprocedural Points-to Analysis

- Flow functions:

\[
\begin{align*}
 \text{kill}(x) &= \bigcup_{v \in \text{Vars}} \{(x, v)\} \\
 F_{x:=k}(S) &= S - \text{kill}(x) \\
 F_{x:=a+b}(S) &= S - \text{kill}(x) \\
 F_{x:=y}(S) &= S - \text{kill}(x) \cup \{(x, v) \mid (y, v) \in S\} \\
 F_{x:=\&y}(S) &= S - \text{kill}(x) \cup \{(x, y)\} \\
 F_{x:=*y}(S) &= S - \text{kill}(x) \cup \{(x, v) \mid \exists t \in \text{Vars}.[(y, t) \in S \land (t, v) \in S]\} \\
 F_{*x:=y}(S) &= \text{let } V := \{v \mid (x, v) \in S\} \text{ in } \\
 S - (\text{if } V = \{v\} \text{ then } \text{kill}(v) \text{ else } \emptyset) \\
 \cup \{(v, t) \mid v \in V \land (y, t) \in S\}
\end{align*}
\]
Pointers to dynamically-allocated memory

- Handle statements of the form: \(x := \text{new } T \)
- One idea: generate a new variable each time the new statement is analyzed to stand for the new location:

\[
F_{x:=\text{new }} T(S) = S - \text{kill}(x) \cup \{(x, \text{newvar}())\}
\]
Example

\[\begin{align*}
\text{s}_1, l & := \text{new Cons} \\
p & := l \\
\text{s}_2, t & := \text{new Cons} \\
*p & := t \\
p & := t
\end{align*} \]
Example solved

\[
\begin{align*}
l &:= \text{new Cons} \\
p &:= l \\
t &:= \text{new Cons} \\
*p &:= t \\
p &:= t
\end{align*}
\]
What went wrong?

- Lattice infinitely tall!
- We were essentially running the program
- Instead, we need to summarize the infinitely many allocated objects in a finite way
- **New Idea**: introduce summary nodes, which will stand for a whole class of allocated objects.
What went wrong?

• Example: For each new statement with label L, introduce a summary node loc_L, which stands for the memory allocated by statement L.

$$F_L: \ x:=\text{new} \ T(S) \ = \ S - \text{kill}(x) \cup \{(x, \text{loc}_L)\}$$

• Summary nodes can use other criterion for merging.
Example revisited

S1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t
Example revisited & solved

S1: l := new Cons

Iter 1

Iter 2

Iter 3

S2: t := new Cons

*p := t

p := t
Array aliasing, and pointers to arrays

- Array indexing can cause aliasing:
 - $a[i]$ aliases $b[j]$ if:
 - a aliases b and $i = j$
 - a and b overlap, and $i = j + k$, where k is the amount of overlap.

- Can have pointers to elements of an array
 - $p := &a[i]; \ldots; p++;$

- How can arrays be modeled?
 - Could treat the whole array as one location.
 - Could try to reason about the array index expressions: array dependence analysis.
• Can summarize fields using per field summary
 – for each field F, keep a points-to node called F that summarizes all possible values that can ever be stored in F

• Can also use allocation sites
 – for each field F, and each allocation site S, keep a points-to node called (F, S) that summarizes all possible values that can ever be stored in the field F of objects allocated at site S.
Summary

• We just saw:
 – intraprocedural points-to analysis
 – handling dynamically allocated memory
 – handling pointers to arrays

• But, intraprocedural pointer analysis is not enough.
 – Sharing data structures across multiple procedures is one the big benefits of pointers: instead of passing the whole data structures around, just pass pointers to them (eg C pass by reference).
 – So pointers end up pointing to structures shared across procedures.
 – If you don’t do an interproc analysis, you’ll have to make conservative assumptions functions entries and function calls.
Conservative approximation on entry

• Say we don’t have interprocedural pointer analysis.

• What should the information be at the input of the following procedure:

```c
    global g;
    void p(x,y) {

        ...

    }
```
Conservative approximation on entry

• Here are a few solutions:

```c
global g;
void p(x,y) {
    ...
}
```

• They are all very conservative!

• We can try to do better.
Interprocedural pointer analysis

• Main difficulty in performing interprocedural pointer analysis is scaling

• One can use a top-down summary based approach (Wilson & Lam 95), but even these are hard to scale
Example revisited

- Cost:
 - space: store one fact at each prog point
 - time: iteration

S1: \(l := \text{new Cons} \)

\[
\begin{align*}
p & := l \\
S2: & t := \text{new Cons} \\
*p & := t \\
p & := t
\end{align*}
\]
New idea: store one dataflow fact

- Store one dataflow fact for the whole program
- Each statement updates this one dataflow fact
 - use the previous flow functions, but now they take the whole program dataflow fact, and return an updated version of it.
- Process each statement once, ignoring the order of the statements
- This is called a flow-insensitive analysis.
Flow insensitive pointer analysis

S1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t
Flow insensitive pointer analysis

S1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t
Flow sensitive vs. insensitive

S1: \(l := \text{new Cons} \)

Flow-sensitive Soln

S2: \(t := \text{new Cons} \)

Flow-insensitive Soln

\[p := l \]

\[*p := t \]

\[p := t \]
What went wrong?

• What happened to the link between p and S1?
 – Can’t do strong updates anymore!
 – Need to remove all the kill sets from the flow functions.

• What happened to the self loop on S2?
 – We still have to iterate!
Flow insensitive pointer analysis: fixed

S1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t
Flow insensitive pointer analysis: fixed

This is Andersen’s algorithm ’94

S1: l := new Cons

p := l

S2: t := new Cons

*p := t

p := t

Iter 1

Iter 2

Iter 3

Final result

This is Andersen’s algorithm’94
Flow sensitive vs. insensitive, again

S1: \(l := \text{new Cons} \)

\[
\begin{align*}
 p & := l \\
 t & := \text{new Cons} \\
 \ast p & := t \\
 p & := t
\end{align*}
\]

Flow-sensitive Soln

Flow-insensitive Soln
Flow insensitive loss of precision

• Flow insensitive analysis leads to loss of precision!

```go
main() {
    x := &y;
    ...
    x := &z;
}
```

Flow insensitive analysis tells us that `x` may point to `z` here!

• However:
 – uses less memory (memory can be a big bottleneck to running on large programs)
 – runs faster
In Class Exercise!

S1: \(p := \text{new Cons} \)

S2: \(q := \text{new Cons} \)

\(*p = q \)

\(r = \&q \)

\(*q = r \)

\(*q = p \)

\(s = r \)

\(s = p \)

\(*r = s \)
In Class Exercise! solved

S1: p := new Cons

S2: q := new Cons

*p = q

r = &q

*q = r

*s = r

*q = p

*s = p

*r = s
Worst case complexity of Andersen

Worst case: N^2 per statement, so at least N^3 for the whole program. Andersen is in fact $O(N^3)$
New idea: one successor per node

• Make each node have only one successor.
• This is an invariant that we want to maintain.
More general case for $*x = y$
More general case for $x^* = y$
Handling: \(x = \ast y \)
Handling: $x = *y$
Handling: $x = y$ (what about $y = x$?)

Handling: $x = \&y$
Handling: $x = y$ (what about $y = x$?)

Handling: $x = &y$
Our favorite example, once more!

S1: \(l := \text{new Cons} \)

\[p := l \]

S2: \(t := \text{new Cons} \)

\[*p := t \]

\[p := t \]
Our favorite example, once more!

S1: l := new Cons

1

p := l

2

S2: t := new Cons

3

*p := t

4

p := t

5
Flow insensitive loss of precision

S1: \(l := \text{new Cons} \)

\[p := l \]

S2: \(t := \text{new Cons} \)

\[*p := t \]

\[p := t \]

- Flow-sensitive Subset-based
 - Flow-insensitive Subset-based
 - Flow-insensitive Unification-based
Another example

```c
void foo(int* p) {
    printf("%d", *p);
}

bar() {
    i := &a;
    j := &b;
    foo(&i);
    foo(&j);
    // i pnts to what?
    *i := ...;
}
```

Another example
Another example

```c
bar() {
    ① i := &a;
    ② j := &b;
    ③ foo(&i);
    ④ foo(&j);
    // i pnts to what?
    *i := ...;
}

void foo(int* p) {
    printf("%d",*p);
}
```
Almost linear time

- Time complexity: $O(N \alpha(N, N))$
- So slow-growing, it is basically linear in practice
- For the curious: node merging implemented using UNION-FIND structure, which allows set union with amortized cost of $O(\alpha(N, N))$ per op. Take CSE 202 to learn more!
In Class Exercise!

S1: \(p := \text{new Cons} \)

S2: \(q := \text{new Cons} \)

\(*p = q \)

\(r = \&q \)

\(*q = r \) \(*q = p \)

\(s = r \) \(s = p \)

\(*r = s \)
In Class Exercise! solved

S1: p := new Cons

S2: q := new Cons

*p = q

r = &q

*q = r

*s = r

*r = s

*s = p

Steensgaard

Andersen

q,S1,s2

p

r

s

p

S1

q

s2

r

s
Advanced Pointer Analysis

• Combine flow-sensitive/flow-insensitive

• Clever data-structure design

• Context-sensitivity