Formalization of DFA using lattices

Recall worklist algorithm

let m: map from edge to computed value at edge
let worklist: work list of nodes

for each edge e in CFG do
 m(e) := \emptyset

for each node n do
 worklist.add(n)

while (worklist.empty.not) do
 let n := worklist.remove.any;
 let info_in := m(n.incoming_edges);
 let info_out := F(n, info_in);
 for i := 0 .. info_out.length do
 let new_info := m(n.outgoing_edges[i]) \cup info_out[i];
 if (m(n.outgoing_edges[i]) \neq new_info)
 m(n.outgoing_edges[i]) := new_info;
 worklist.add(n.outgoing_edges[i].dst);

Using lattices

- We formalize our domain with a powerset lattice
- What should be top and what should be bottom?

Using lattices

- We formalize our domain with a powerset lattice
- What should be top and what should be bottom?
- Does it matter?
 - It matters because, as we’ve seen, there is a notion of approximation, and this notion shows up in the lattice

Using lattices

- Unfortunately:
 - dataflow analysis community has picked one direction
 - abstract interpretation community has picked the other
- We will work with the abstract interpretation direction
- Bottom is the most precise (optimistic) answer, Top the most imprecise (conservative)

Direction of lattice

- Always safe to go up in the lattice
- Can always set the result to \top
- Hard to go down in the lattice
- So ... Bottom will be the empty set in reaching defs
Worklist algorithm using lattices

```
let m: map from edge to computed value at edge
let worklist: work list of nodes

for each edge e in CFG do
    m(e) := ⊥

for each node n do
    worklist.add(n)

while (worklist.empty.not) do
    let n := worklist.remove_any;
    let info_in := m(n.incoming_edges);
    let info_out := F(n, info_in);
    for i := 0 .. info_out.length do
        let new_info := m(n.outgoing_edges[i]) 
        info_out[i];
        if (m(n.outgoing_edges[i]) ≠ new_info)
            m(n.outgoing_edges[i]) := new_info;
    worklist.add(n.outgoing_edges[i].dst);
```

Termination of this algorithm?

- For reaching definitions, it terminates...
- Why?
 - lattice is finite
- Can we loosen this requirement?
 - Yes, we only require the lattice to have a finite height
- Height of a lattice: length of the longest ascending or descending chain
- Height of lattice \((2^{|S|}, ⊆) = |S|\)

Termination

- Still, it's annoying to have to perform a join in the worklist algorithm
- It would be nice to get rid of it, if there is a property of the flow functions that would allow us to do so

```
while (worklist.empty.not) do
    let n := worklist.remove_any;
    let info_in := m(n.incoming_edges);
    let info_out := F(n, info_in);
    for i := 0 .. info_out.length do
        let new_info := m(n.outgoing_edges[i]) 
        info_out[i];
        if (m(n.outgoing_edges[i]) ≠ new_info)
            m(n.outgoing_edges[i]) := new_info;
    worklist.add(n.outgoing_edges[i].dst);
```

Even more formal

- To reason more formally about termination and precision, we re-express our worklist algorithm mathematically
- We will use fixed points to formalize our algorithm

Fixed points

- Recall, we are computing \(m\), a map from edges to dataflow information
- Define a global flow function \(F\) as follows: \(F\) takes a map \(m\) as a parameter and returns a new map \(m'\), in which individual local flow functions have been applied

\[
\begin{align*}
F(m) &= \text{new map} \\
&= \text{map from edge to dataflow information} \\
&= \text{flow functions applied to } m
\end{align*}
\]
Fixed points

- We want to find a fixed point of F, that is to say a map m such that $m = F(m)$
- Approach to doing this?
 - Define \top, which is \bot lifted to be a map: $\top = \lambda \ e. \ \bot$
 - Compute $F(\top)$, then $F(F(\top))$, then $F(F(F(\top)))$, ... until the result doesn't change anymore

Fixed points

- Formally:
 $$\mathcal{S} = \bigcap_{i=0}^{\infty} F^i(\top)$$
- We would like the sequence $F(\top)$ for $i = 0, 1, 2$... to be increasing, so we can get rid of the outer join
 - Require that F be monotonic:
 - $\forall \ a, b \ . \ a \subseteq b \Rightarrow F(a) \subseteq F(b)$

Back to termination

- So if F is monotonic, we have what we want: finite height \Rightarrow termination, without the outer join
- Also, if the local flow functions are monotonic, then global flow function F is monotonic

Another benefit of monotonicity

- Suppose Marsians came to earth, and miraculously give you a fixed point of F, call it fp.
 - Then:
 $$\top \subseteq fp$$
 $$F(\top) \subseteq fp$$
 $$F^k(\top) \subseteq fp$$
 $$\vdots$$
 $$F^k(fp) \subseteq fp$$
Another benefit of monotonicity

- Suppose Marsians came to earth, and miraculously give you a fixed point of F, call it fp.
- Then:

\[
\begin{align*}
\exists \ i & \in fp \\
F(i) & \subseteq F(fp) \\
F^2(i) & \subseteq fp \\
\partial i & \subseteq fp
\end{align*}
\]

Recap

- Let's do a recap of what we've seen so far
- Started with worklist algorithm for reaching definitions

Worklist algorithm for reaching defns

```plaintext
let m: map from edge to computed value at edge
let worklist: work list of nodes
for each edge e in CFG do
  m(e) := ∅
for each node n do
  worklist.add(n)
while (worklist.empty.not) do
  let n := worklist.remove_any;
  let info_in := m(n.incoming_edges);
  let info_out := F(n, info_in);
  for i := 0 .. info_out.length do
    let new_info := m(n.outgoing_edges[i])
    if (m(n.outgoing_edges[i])  new_info)
      m(n.outgoing_edges[i]) := new_info;
    worklist.add(n.outgoing_edges[i].dst);
```

Another benefit of monotonicity

- We are computing the least fixed point...

Generalized algorithm using lattices

```plaintext
let m: map from edge to computed value at edge
let worklist: work list of nodes
for each edge e in CFG do
  m(e) := ∅
for each node n do
  worklist.add(n)
while (worklist.empty.not) do
  let n := worklist.remove_any;
  let info_in := m(n.incoming_edges);
  let info_out := F(n, info_in);
  for i := 0 .. info_out.length do
    let new_info := m(n.outgoing_edges[i])
    if (m(n.outgoing_edges[i])  new_info)
      m(n.outgoing_edges[i]) := new_info;
    worklist.add(n.outgoing_edges[i].dst);
```

Next step: removed outer join

- Wanted to remove the outer join, while still providing termination guarantee
- To do this, we re-expressed our algorithm more formally
- We first defined a "global" flow function F, and then expressed our algorithm as a fixed point computation
Guarantees

- If F is monotonic, don’t need outer join
- If F is monotonic and height of lattice is finite: iterative algorithm terminates
- If F is monotonic, the fixed point we find is the least fixed point.

What about if we start at top?

- What if we start with $\top: F(\top), F(F(\top)), F(F(F(\top)))$
- We get the greatest fixed point
- Why do we prefer the least fixed point?
 - More precise

Graphically

- $y = 10$
- $x = 10$

Graphically

- $y = 10$
- $x = 10$
Graphically, another way