Dataflow analysis
Dataflow analysis: what is it?

• A common framework for expressing algorithms that compute information about a program

• Why is such a framework useful?
Dataflow analysis: what is it?

- A common framework for expressing algorithms that compute information about a program

- Why is such a framework useful?

- Provides a common language, which makes it easier to:
 - communicate your analysis to others
 - compare analyses
 - adapt techniques from one analysis to another
 - reuse implementations (eg: dataflow analysis frameworks)
Control Flow Graphs

• For now, we will use a Control Flow Graph representation of programs
 – each statement becomes a node
 – edges between nodes represent control flow

• Later we will see other program representations
 – variations on the CFG (eg CFG with basic blocks)
 – other graph based representations
Example CFG

```plaintext
x := ...
y := ...
y := ...
p := ...
if (...) {
    ... x ...
x := ...
    ... y ...
}
else {
    ... x ...
x := ...
    *p := ...
}
```

```
x := ...
y := ...
y := ...
p := ...
```

```
... x ...
... y ...
```

```
... x ...
x := ...
... y ...
```

```
... x ...
x := ...
... y ...
```

```
... x ...
x := ...
```

```
... x ...
x := ...
```

```
... x ...
```
An example DFA: reaching definitions

• For each use of a variable, determine what assignments could have set the value being read from the variable

• Information useful for:
 – performing constant and copy prop
 – detecting references to undefined variables
 – presenting “def/use chains” to the programmer
 – building other representations, like the DFG

• Let’s try this out on an example
\[\begin{align*}
x & := \ldots \\
y & := \ldots \\
p & := \ldots \\
\text{if (\ldots)} & \\
\ldots x \ldots & \\
x & := \ldots \\
\ldots y \ldots & \\
*p & := \ldots \\
\ldots x \ldots & \\
\ldots y \ldots & \\
y & := \ldots \\
\ldots x \ldots & \\
\ldots y \ldots & \\
y & := \ldots \\
\ldots p \ldots & \\
\ldots x \ldots & \\
\ldots x \ldots & \\
\ldots y \ldots & \\
y & := \ldots \\
\ldots x \ldots & \\
\ldots y \ldots & \\
*p & := \ldots \\
\ldots x \ldots & \\
\ldots y \ldots & \\
y & := \ldots \\
\end{align*} \]
1: \(x := \ldots \)
2: \(y := \ldots \)
3: \(y := \ldots \)
4: \(p := \ldots \)

5: \(x := \ldots \)
6: \(x := \ldots \)
7: \(*p := \ldots \)

8: \(y := \ldots \)
1: \(x := \ldots \)
2: \(y := \ldots \)
3: \(y := \ldots \)
4: \(p := \ldots \)

5: \(x := \ldots \)
6: \(x := \ldots \)
7: \(*p := \ldots \)

8: \(y := \ldots \)
Safety

• When is computed info safe?

• Recall intended use of this info:
 – performing constant and copy prop
 – detecting references to undefined variables
 – presenting “def/use chains” to the programmer
 – building other representations, like the DFG

• Safety:
 – can have more bindings than the “true” answer, but can’t miss any
Reaching definitions generalized

• DFA framework geared to computing information at each program point (edge) in the CFG
 – So generalize problem by stating what should be computed at each program point

• For each program point in the CFG, compute the set of definitions (statements) that may reach that point

• Notion of safety remains the same
Reaching definitions generalized

• Computed information at a program point is a set of var → stmt bindings
 – eg: \{ x → s_1, x → s_2, y → s_3 \}

• How do we get the previous info we wanted?
 – if a var x is used in a stmt whose incoming info is *in*, then:
Reaching definitions generalized

• Computed information at a program point is a set of var → stmt bindings
 – eg: \{ x \rightarrow s_1, x \rightarrow s_2, y \rightarrow s_3 \}

• How do we get the previous info we wanted?
 – if a var x is used in a stmt whose incoming info is \textit{in},
 then: \{ s \mid (x \rightarrow s) \in \textit{in} \}

• This is a common pattern
 – generalize the problem to define what information should be computed at each program point
 – use the computed information at the program points to get the original info we wanted
1: \(x := \ldots \)
2: \(y := \ldots \)
3: \(y := \ldots \)
4: \(p := \ldots \)

... \(x \) ...
5: \(x := \ldots \)
... \(y \) ...

... \(x \) ...
6: \(x := \ldots \)
7: \(*p := \ldots \)

... \(x \) ...
... \(y \) ...
8: \(y := \ldots \)
1: \(x := \ldots \)
2: \(y := \ldots \)
3: \(y := \ldots \)
4: \(p := \ldots \)

5: \(x := \ldots \)
6: \(x := \ldots \)
7: \(*p := \ldots \)
8: \(y := \ldots \)
Using constraints to formalize DFA

• Now that we’ve gone through some examples, let’s try to precisely express the algorithms for computing dataflow information

• We’ll model DFA as solving a system of constraints

• Each node in the CFG will impose constraints relating information at predecessor and successor points

• Solution to constraints is result of analysis
Constraints for reaching definitions

\[
\begin{align*}
\text{s: } x & := \ldots \\
\text{in} & \downarrow \quad \text{out}
\end{align*}
\]

\[
\begin{align*}
\text{s: } *p & := \ldots \\
\text{in} & \downarrow \quad \text{out}
\end{align*}
\]
Constraints for reaching definitions

- Using may-point-to information:
 \[
 \text{out} = \text{in} - \{ x \rightarrow s' \mid s' \in \text{stmts} \} \cup \{ x \rightarrow s \}
 \]

- Using must-point-to as well:
 \[
 \text{out} = \text{in} - \{ x \rightarrow s' \mid x \in \text{must-point-to}(p) \} \land
 s' \in \text{stmts}
 \]
 \[
 \cup \{ x \rightarrow s \mid x \in \text{may-point-to}(p) \}
 \]
Constraints for reaching definitions

\[s: \text{if} \ (\ldots) \]

\begin{align*}
\text{out}[0] & \quad \text{out}[1] \\
\downarrow & \quad \downarrow \\
in & \\
\end{align*}

\begin{align*}
\text{in}[0] & \quad \text{in}[1] \\
\downarrow & \quad \downarrow \\
\text{merge} & \\
\downarrow & \quad \downarrow \\
\text{out} & \\
\end{align*}
Constraints for reaching definitions

\[s: \text{if} \ (\ldots) \]

\[\text{out}[0] \quad \text{out}[1] \]

\[\text{in} \]

\[\text{out} [0] = \text{in} \land \]
\[\text{out} [1] = \text{in} \]

more generally: \(\forall i . \text{out}[i] = \text{in} \)

\[\text{merge} \]

\[\text{out}[0] \quad \text{in}[1] \]

\[\text{in}[0] \quad \text{in}[1] \]

\[\text{out} \]

\[\text{out} = \text{in}[0] \cup \text{in}[1] \]

more generally: \(\text{out} = \bigcup_i \text{in}[i] \)
Flow functions

• The constraint for a statement kind s often have the form: $\text{out} = F_s(\text{in})$

• F_s is called a flow function
 – other names for it: dataflow function, transfer function

• Given information in before statement s, $F_s(\text{in})$ returns information after statement s

• Other formulations have the statement s as an explicit parameter to F: given a statement s and some information in, $F(s,\text{in})$ returns the outgoing information after statement s
Flow functions, some issues

• Issue: what does one do when there are multiple input edges to a node?

• Issue: what does one do when there are multiple outgoing edges to a node?
Flow functions, some issues

• Issue: what does one do when there are multiple input edges to a node?
 – the flow functions takes as input a tuple of values, one value for each incoming edge

• Issue: what does one do when there are multiple outgoing edges to a node?
 – the flow function returns a tuple of values, one value for each outgoing edge
 – can also have one flow function per outgoing edge
Flow functions

- Flow functions are a central component of a dataflow analysis
- They state constraints on the information flowing into and out of a statement

- This version of the flow functions is local
 - it applies to a particular statement kind
 - we’ll see global flow functions shortly...
Summary of flow functions

• Flow functions: Given information \(in \) before statement \(s \), \(F_s(in) \) returns information after statement \(s \)

• Flow functions are a central component of a dataflow analysis

• They state constraints on the information flowing into and out of a statement
Back to example

1: \(x := \ldots \)
2: \(y := \ldots \)
3: \(y := \ldots \)
4: \(p := \ldots \)

\[\text{if}(\ldots) \]

5: \(x := \ldots \)
6: \(x := \ldots \)
7: \(*p := \ldots \)

\(d_9 = F_f(d_4) \)

\(d_{10} = F_j(d_9) \)
\(d_{11} = F_k(d_{10}) \)
\(d_{12} = F_i(d_{11}) \)

\(d_9 \)
\(d_5 \)
\(d_{12} \)

\(d_{13} = F_m(d_{12}, d_8) \)
\(d_{14} = F_n(d_{13}) \)
\(d_{15} = F_o(d_{14}) \)
\(d_{16} = F_p(d_{15}) \)

How to find solutions for \(d_i \)?
How to find solutions for d_i?

• This is a forward problem
 – given information flowing \textit{in} to a node, can determine using the flow function the info flow \textit{out} of the node

• To solve, simply propagate information forward through the control flow graph, using the flow functions

• What are the problems with this approach?
First problem

What about the incoming information?
First problem

• What about the incoming information?
 – \(d_0 \) is not constrained
 – so where do we start?

• Need to constrain \(d_0 \)

• Two options:
 – explicitly state entry information
 – have an entry node whose flow function sets the information on entry (doesn’t matter if entry node has an incoming edge, its flow function ignores any input)
Entry node

\[s : \text{entry} \]

\[\text{out} = \{ x \rightarrow s \mid x \in \text{Formals} \} \]
Second problem

1: \(x := \ldots \)
2: \(y := \ldots \)
3: \(y := \ldots \)
4: \(p := \ldots \)

\[
\text{if}(\ldots)
\]

\[
d_9 = F_f(d_4)
\]

\[
d_{10} = F_j(d_9)
\]
\[
d_{11} = F_k(d_{10})
\]
\[
d_{12} = F_l(d_{11})
\]

\[
\ldots \ x \ldots
\]

5: \(x := \ldots \)

\[
\ldots \ y \ldots
\]

6: \(x := \ldots \)
7: \(*p := \ldots \)

\[
d_5
\]

\[
d_{13} = F_m(d_{12}, d_8)
\]
\[
d_{14} = F_n(d_{13})
\]
\[
d_{15} = F_o(d_{14})
\]
\[
d_{16} = F_p(d_{15})
\]

\[
d_0 = F_{\text{entry}}()
\]
\[
d_1 = F_a(d_0)
\]
\[
d_2 = F_b(d_1)
\]
\[
d_3 = F_c(d_2)
\]
\[
d_4 = F_d(d_3)
\]
\[
d_5 = F_e(d_4)
\]
\[
d_6 = F_g(d_5)
\]
\[
d_7 = F_h(d_6)
\]
\[
d_8 = F_i(d_7)
\]

\[
\text{Which order to process nodes in?}
\]
Second problem

• Which order to process nodes in?

• Sort nodes in topological order
 – each node appears in the order after all of its predecessors

• Just run the flow functions for each of the nodes in the topological order

• What’s the problem now?
Second problem, prime

- When there are loops, there is no topological order!
- What to do?
- Let’s try and see what we can do
Worklist algorithm

• Initialize all d_i to the empty set
• Store all nodes onto a worklist
• while worklist is not empty:
 – remove node n from worklist
 – apply flow function for node n
 – update the appropriate d_i, and add nodes whose inputs have changed back onto worklist
Worklist algorithm

let m: map from edge to computed value at edge
let worklist: work list of nodes

for each edge e in CFG do
 m(e) := ∅

for each node n do
 worklist.add(n)

while (worklist.empty.not) do
 let n := worklist.remove_any;
 let info_in := m(n.incoming_edges);
 let info_out := F(n, info_in);
 for i := 0 .. info_out.length-1 do
 if (m(n.outgoing_edges[i]) ≠ info_out[i])
 m(n.outgoing_edges[i]) := info_out[i];
 worklist.add(n.outgoing_edges[i].dst);
Issues with worklist algorithm
Two issues with worklist algorithm

• Ordering
 – In what order should the original nodes be added to the worklist?
 – What order should nodes be removed from the worklist?

• Does this algorithm terminate?
Order of nodes

• Topological order assuming back-edges have been removed
• Reverse depth-first post-order
• Use an ordered worklist
1: \(x := \ldots \)
2: \(y := \ldots \)
3: \(y := \ldots \)
4: \(p := \ldots \)

5: \(x := \ldots \)
\[\ldots y \ldots \]

6: \(x := \ldots \)
7: \(*p := \ldots \)

8: \(y := \ldots \)
Termination

• Why is termination important?
• Can we stop the algorithm in the middle and just say we’re done...
• No: we need to run it to completion, otherwise the results are not safe...
Termination

- Assuming we’re doing reaching defs, let’s try to guarantee that the worklist loop terminates, regardless of what the flow function F does.

```plaintext
while (worklist.empty.not) do
    let n := worklist.remove_any;
    let info_in := m(n.incoming_edges);
    let info_out := F(n, info_in);
    for i := 0 .. info_out.length-1 do
        if (m(n.outgoing_edges[i]) ≠ info_out[i])
            m(n.outgoing_edges[i]) := info_out[i];
            worklist.add(n.outgoing_edges[i].dst);
```
Termination

- Assuming we’re doing reaching defs, let’s try to guarantee that the worklist loop terminates, regardless of what the flow function F does.

```plaintext
while (worklist.empty.not) do
  let n := worklist.remove_any;
  let info_in := m(n.incoming_edges);
  let info_out := F(n, info_in);
  for i := 0 .. info_out.length-1 do
    let new_info := m(n.outgoing_edges[i]) \cup info_out[i];
    if (m(n.outgoing_edges[i]) ≠ new_info)
      m(n.outgoing_edges[i]) := new_info;
      worklist.add(n.outgoing_edges[i].dst);
```
Structure of the domain

- We’re using the structure of the domain outside of the flow functions

- In general, it’s useful to have a framework that formalizes this structure

- We will use lattices