Dataflow analysis

Dataflow analysis: what is it?

• A common framework for expressing algorithms that compute information about a program
• Why is such a framework useful?

• Provides a common language, which makes it easier to:
 – communicate your analysis to others
 – compare analyses
 – adapt techniques from one analysis to another
 – reuse implementations (e.g., dataflow analysis frameworks)

Control Flow Graphs

• For now, we will use a Control Flow Graph representation of programs
 – each statement becomes a node
 – edges between nodes represent control flow

• Later we will see other program representations
 – variations on the CFG (e.g., CFG with basic blocks)
 – other graph-based representations

Example CFG

```
x := ...
y := ...
y := ...
p := ...
if (...) {
    ... x ...
    x := ...
    ... y ...
} else {
    ... x ...
    x := ...
    ... p := ...
}
... x ...
y := ...
y := ...
p := ...
```

An example DFA: reaching definitions

• For each use of a variable, determine what assignments could have set the value being read from the variable

• Information useful for:
 – performing constant and copy propagation
 – detecting references to undefined variables
 – presenting “def/use chains” to the programmer
 – building other representations, like the DFG

• Let’s try this out on an example
Safety

• When is computed info safe?

Recall intended use of this info:
 – performing constant and copy prop
 – detecting references to undefined variables
 – presenting "def/use chains" to the programmer
 – building other representations, like the DFG

• Safety:
 – can have more bindings than the "true" answer, but can’t miss any

Reaching definitions generalized

• DFA framework geared to computing information at each program point (edge) in the CFG
 – So generalize problem by stating what should be computed at each program point

• For each program point in the CFG, compute the set of definitions (statements) that may reach that point

• Notion of safety remains the same
Reaching definitions generalized

- Computed information at a program point is a set of \(\text{var} \rightarrow \text{stmt} \) bindings
 - eg: \{ \(x \rightarrow s_1 \), \(x \rightarrow s_2 \), \(y \rightarrow s_3 \) \}

- How do we get the previous info we wanted?
 - if a var \(x \) is used in a stmt whose incoming info is \(\text{in} \), then: \{ \(s \mid \{ x \rightarrow s \} \in \text{in} \) \}

- This is a common pattern
 - generalize the problem to define what information should be computed at each program point
 - use the computed information at the program points to get the original info we wanted

Using constraints to formalize DFA

- Now that we've gone through some examples, let's try to precisely express the algorithms for computing dataflow information
- We'll model DFA as solving a system of constraints
- Each node in the CFG will impose constraints relating information at predecessor and successor points
- Solution to constraints is result of analysis

Constraints for reaching definitions

Using may-point-to information:
\[
\text{out} = \text{in} - \{ x \rightarrow s' \mid s' \in \text{stmts} \} \cup \{ x \rightarrow s \}
\]

Using must-point-to aswell:
\[
\text{out} = \text{in} - \{ x \rightarrow s' \mid x \in \text{must-point-to}(p) \land s' \in \text{stmts} \} \cup \{ x \rightarrow s \mid x \in \text{may-point-to}(p) \}
\]
Flow functions

- The constraint for a statement kind \(s \) often have the form: \(\text{out} = F_s(\text{in}) \)
- \(F_s \) is called a flow function
 - other names for it: dataflow function, transfer function
- Given information \(\text{in} \) before statement \(s \), \(F_s(\text{in}) \) returns information after statement \(s \)
- Other formulations have the statement \(s \) as an explicit parameter to \(F \): given a statement \(s \) and some information \(\text{in} \), \(F(s, \text{in}) \) returns the outgoing information after statement \(s \)

Flow functions, some issues

- Issue: what does one do when there are multiple input edges to a node?
 - the flow functions takes as input a tuple of values, one value for each incoming edge
- Issue: what does one do when there are multiple outgoing edges to a node?
 - the flow function returns a tuple of values, one value for each outgoing edge
 - can also have one flow function per outgoing edge

Flow functions, some issues

- Issue: what does one do when there are multiple input edges to a node?
- Issue: what does one do when there are multiple outgoing edges to a node?

Flow functions

- Flow functions are a central component of a dataflow analysis
- They state constraints on the information flowing into and out of a statement
- This version of the flow functions is local
 - it applies to a particular statement kind
 - we'll see global flow functions shortly...
Summary of flow functions

- Flow functions: Given information \(in \) before statement \(s \), \(F_s(in) \) returns information after statement \(s \)
- Flow functions are a central component of a dataflow analysis
- They state constraints on the information flowing into and out of a statement

How to find solutions for \(d_i \)?

- This is a forward problem
 - given information flowing \(in \) to a node, can determine using the flow function the info flow \(out \) of the node
- To solve, simply propagate information forward through the control flow graph, using the flow functions
- What are the problems with this approach?

First problem

- What about the incoming information?
 - \(d_0 \) is not constrained
 - so where do we start?
- Need to constrain \(d_0 \)
- Two options:
 - explicitly state entry information
 - have an entry node whose flow function sets the information on entry (doesn't matter if entry node has an incoming edge, its flow function ignores any input)

Entry node

\[s: \text{entry} \]

\[\text{out} = \{ x \rightarrow s \mid x \in \text{Formals} \} \]
Second problem

1: x := ...
2: y := ...
3: y := ...
4: p := ...
if(...)
... x ...
5: x := ...
... y ...
... x ...
6: x := ...
7: *p := ...
merge ...
... x ...
... y ...
8: y := ...

Which order to process nodes in?

d0 = F(entry)
d1 = F(a(d0))
d2 = F(b(d1))
d3 = F(c(d2))
d4 = F(d3)
d5 = F(e(d4))
d6 = F(g(d5))
d7 = F(h(d6))
d8 = F(i(d7))
d9 = F(f(d4))
d10 = F(j(d9))
d11 = F(k(d10))
d12 = F(l(d11))
d13 = F(m(d12, d8))
d14 = F(n(d13))
d15 = F(o(d14))
d16 = F(p(d15))

Second problem

• Which order to process nodes in?

• Sort nodes in topological order
 – each node appears in the order after all of its predecessors

• Just run the flow functions for each of the nodes in the topological order

• What’s the problem now?

Second problem, prime

• When there are loops, there is no topological order!

• What to do?

• Let’s try and see what we can do

Worklist algorithm

• Initialize all d, to the empty set

• Store all nodes onto a worklist

• while worklist is not empty:
 – remove node n from worklist
 – apply flow function for node n
 – update the appropriate d, and add nodes whose inputs have changed back onto worklist
Worklist algorithm

let m: map from edge to computed value at edge
let worklist: work list of nodes
for each edge e in CFG do
 $m(e)$:= \emptyset
for each node n do
 worklist.add(n)
while (worklist.empty.not) do
 let n := worklist.remove_any;
 let info_in := $m(n\text{.incoming_edges})$;
 let info_out := $P[n,\text{info_in}]$;
 for $i := 0 \ldots \text{info_out.length}-1$ do
 if ($m(n\text{.outgoing_edges}[i]) \neq \text{info_out}[i]$)
 $m(n\text{.outgoing_edges}[i]) := \text{info_out}[i]$;
 worklist.add($n\text{.outgoing_edges}[i].\text{dst}$);

Issues with worklist algorithm

Two issues with worklist algorithm

- **Ordering**
 - In what order should the original nodes be added to the worklist?
 - What order should nodes be removed from the worklist?
- **Does this algorithm terminate?**

Order of nodes

- Topological order assuming back-edges have been removed
- Reverse depth-first post-order
- Use an ordered worklist

Termination

- Why is termination important?
- Can we stop the algorithm in the middle and just say we’re done...
- No: we need to run it to completion, otherwise the results are not safe...
Termination

• Assuming we’re doing reaching defs, let’s try to guarantee that the worklist loop terminates, regardless of what the flow function F does.

```plaintext
while (worklist.empty.not) do
    let n := worklist.remove_any;
    let info_in := m(n.incoming_edges);
    let info_out := F(n, info_in);
    for i := 0 .. info_out.length-1 do
        if (m(n.outgoing_edges[i]) ≠ info_out[i])
            m(n.outgoing_edges[i]) := info_out[i];
        worklist.add(n.outgoing_edges[i].dst);
```

Structure of the domain

• We’re using the structure of the domain outside of the flow functions.

• In general, it’s useful to have a framework that formalizes this structure.

• We will use lattices.