Dataflow analysis
Dataflow analysis: what is it?

- A common framework for expressing algorithms that compute information about a program
- Why is such a framework useful?
Dataflow analysis: what is it?

- A common framework for expressing algorithms that compute information about a program
- Why is such a framework useful?
- Provides a common language, which makes it easier to:
 - communicate your analysis to others
 - compare analyses
 - adapt techniques from one analysis to another
 - reuse implementations (e.g., dataflow analysis frameworks)
Control Flow Graphs

- For now, we will use a Control Flow Graph representation of programs
 - each statement becomes a node
 - edges between nodes represent control flow

- Later we will see other program representations
 - variations on the CFG (eg CFG with basic blocks)
 - other graph based representations
Example CFG

\[x := \ldots \]
\[y := \ldots \]
\[y := \ldots \]
\[p := \ldots \]
\[
\text{if} (\ldots) \{
 \ldots \ x \ldots \\
 x := \ldots \\
 \ldots \ y \ldots \\
\}
\]
\[
\text{else} \{ \\
 \ldots \ x \ldots \\
 x := \ldots \\
 p := \ldots \\
\}
\]
\[\ldots \ x \ldots \\
\]
\[\ldots \ y \ldots \\
\]
\[y := \ldots \]
An example DFA: reaching definitions

• For each use of a variable, determine what assignments could have set the value being read from the variable

• Information useful for:
 – performing constant and copy prop
 – detecting references to undefined variables
 – presenting “def/use chains” to the programmer
 – building other representations, like the DFG

• Let’s try this out on an example
x := ...

y := ...

p := ...

if (...)

... x ...

x := ...

... y ...

*p := ...

... x ...

x := ...

... y ...

... x ...

x := ...

... y ...

y := ...

... x ...

x := ...

... y ...

5: x := ...

... y ...

6: x := ...

... y ...

7: *p := ...

8: y := ...

1: x := ...

2: y := ...

3: y := ...

4: p := ...

Visual sugar
Safety

• When is computed info safe?

• Recall intended use of this info:
 – performing constant and copy prop
 – detecting references to undefined variables
 – presenting “def/use chains” to the programmer
 – building other representations, like the DFG

• Safety:
 – can have more bindings than the “true” answer, but can’t miss any
Reaching definitions generalized

• DFA framework geared to computing information at each program point (edge) in the CFG
 – So generalize problem by stating what should be computed at each program point

• For each program point in the CFG, compute the set of definitions (statements) that may reach that point

• Notion of safety remains the same
Reaching definitions generalized

• Computed information at a program point is a set of var → stmt bindings
 – eg: \{ x → s_1, x → s_2, y → s_3 \}

• How do we get the previous info we wanted?
 – if a var \(x \) is used in a stmt whose incoming info is \(in \), then:
Reaching definitions generalized

- Computed information at a program point is a set of var → stmt bindings
 - eg: \(\{ x \rightarrow s_1, x \rightarrow s_2, y \rightarrow s_3 \} \)

- How do we get the previous info we wanted?
 - if a var \(x \) is used in a stmt whose incoming info is \(in \), then: \(\{ s \mid (x \rightarrow s) \in in \} \)

- This is a common pattern
 - generalize the problem to define what information should be computed at each program point
 - use the computed information at the program points to get the original info we wanted
1: \(x := \ldots \)
2: \(y := \ldots \)
3: \(y := \ldots \)
4: \(p := \ldots \)

5: \(x := \ldots \)
 \(y := \ldots \)

6: \(x := \ldots \)

7: \(*p := \ldots \)

8: \(y := \ldots \)
Using constraints to formalize DFA

• Now that we’ve gone through some examples, let’s try to precisely express the algorithms for computing dataflow information

• We’ll model DFA as solving a system of constraints

• Each node in the CFG will impose constraints relating information at predecessor and successor points

• Solution to constraints is result of analysis
Constraints for reaching definitions

\[\{ a \mapsto 5, \ b \mapsto 10, \ c \mapsto 11, \ldots \} \]

\[\text{out} = \text{in} - \{ x \mapsto * \} \cup \{ x \mapsto 5 \} \]

\[\text{out} = \text{in} \cup \{ v \mapsto 5 \mid v \in \text{may_pt}(p) \} \]
Constraints for reaching definitions

Using may-point-to information:
\[
\text{out} = \text{in} - \{ x \rightarrow \text{s'} | \text{s'} \in \text{stmts} \} \cup \{ x \rightarrow \text{s} \}
\]

Using must-point-to as well:
\[
\text{out} = \text{in} - \{ x \rightarrow \text{s'} | x \in \text{must-point-to(p)} \land \text{s'} \in \text{stmts} \} \\
\cup \{ x \rightarrow \text{s} | x \in \text{may-point-to(p)} \}
\]
Constraints for reaching definitions

\[
\begin{align*}
\text{s: if (\ldots)} & \quad \text{out[0]} \quad \text{out[1]} \\
\text{in[0]} & \quad \text{in[1]} \quad \text{merge} \\
\text{out} &
\end{align*}
\]

\[
\begin{align*}
\text{out[0]} & = \text{in} \\
\text{out[1]} & = \text{in}
\end{align*}
\]

\[
\text{cut} = \ldots \text{v} \ldots
\]
Constraints for reaching definitions

\[\text{s: if (\ldots)} \]

\[\text{out[0]} \quad \text{out[1]} \]

\[\text{out[0]} = \text{in} \quad \text{out[1]} = \text{in} \]

more generally: \(\forall i \cdot \text{out}[i] = \text{in} \)

\[\text{merge} \]

\[\text{in[0]} \quad \text{in[1]} \]

\[\text{out} = \text{in[0]} \cup \text{in[1]} \]

more generally: \(\text{out} = \bigcup_i \text{in}[i] \)
Flow functions

• The constraint for a statement kind s often have the form: $\text{out} = F_s(in)$

• F_s is called a flow function
 – other names for it: dataflow function, transfer function

• Given information in before statement s, $F_s(in)$ returns information after statement s

• Other formulations have the statement s as an explicit parameter to F: given a statement s and some information in, $F(s,in)$ returns the outgoing information after statement s
Flow functions, some issues

• Issue: what does one do when there are multiple input edges to a node?

• Issue: what does one do when there are multiple outgoing edges to a node?
Flow functions, some issues

• Issue: what does one do when there are multiple input edges to a node?
 – the flow functions takes as input a tuple of values, one value for each incoming edge

• Issue: what does one do when there are multiple outgoing edges to a node?
 – the flow function returns a tuple of values, one value for each outgoing edge
 – can also have one flow function per outgoing edge
Flow functions

- Flow functions are a central component of a dataflow analysis.
- They state constraints on the information flowing into and out of a statement.
- This version of the flow functions is local:
 - it applies to a particular statement kind
 - we’ll see global flow functions shortly...
Summary of flow functions

- Flow functions: Given information \(in \) before statement \(s \), \(F_s(in) \) returns information after statement \(s \)
- Flow functions are a central component of a dataflow analysis
- They state constraints on the information flowing into and out of a statement
How to find solutions for \(d_i \)?
How to find solutions for d_i?

• This is a forward problem
 – given information flowing *in* to a node, can determine using the flow function the info flow *out* of the node

• To solve, simply propagate information forward through the control flow graph, using the flow functions

• What are the problems with this approach?
First problem

1: \(x := \ldots \)
2: \(y := \ldots \)
3: \(y := \ldots \)
4: \(p := \ldots \)

if(\ldots)

5: \(x := \ldots \)
6: \(\ast p := \ldots \)

\(d_9 = F_i(d_4) \)

\(d_{10} = F_j(d_9) \)
\(d_{11} = F_k(d_{10}) \)
\(d_{12} = F_l(d_{11}) \)

5: \(x := \ldots \)
6: \(x := \ldots \)

What about the incoming information?
First problem

• What about the incoming information?
 – d_0 is not constrained
 – so where do we start?

• Need to constrain d_0

• Two options:
 – explicitly state entry information
 – have an entry node whose flow function sets the information on entry (doesn’t matter if entry node has an incoming edge, its flow function ignores any input)
Entry node

\[s: \text{entry} \quad \text{out} = \{ x \rightarrow s \mid x \in \text{Formals} \} \]
Second problem

Which order to process nodes in?
Second problem

• Which order to process nodes in?

• Sort nodes in topological order
 – each node appears in the order after all of its predecessors

• Just run the flow functions for each of the nodes in the topological order

• What’s the problem now?
Second problem, prime

- When there are loops, there is no topological order!
- What to do?
- Let’s try and see what we can do
Worklist algorithm

- Initialize all d_i to the empty set
- Store all nodes onto a worklist
- while worklist is not empty:
 - remove node n from worklist
 - apply flow function for node n
 - update the appropriate d_i, and add nodes whose inputs have changed back onto worklist
Worklist algorithm

let m: map from edge to computed value at edge
let worklist: work list of nodes

for each edge e in CFG do
 m(e) := ∅

for each node n do
 worklist.add(n)

while (worklist.empty.not) do
 let n := worklist.remove_any;
 let info_in := m(n.incoming_edges);
 let info_out := F(n, info_in);
 for i := 0 .. info_out.length-1 do
 if (m(n.outgoing_edges[i]) ≠ info_out[i])
 m(n.outgoing_edges[i]) := info_out[i];
 worklist.add(n.outgoing_edges[i].dst);
Issues with worklist algorithm
Two issues with worklist algorithm

- Ordering
 - In what order should the original nodes be added to the worklist?
 - What order should nodes be removed from the worklist?

- Does this algorithm terminate?
Order of nodes

- Topological order assuming back-edges have been removed
- Reverse depth-first post-order
- Use an ordered worklist
1: \(x := \ldots \)
2: \(y := \ldots \)
3: \(y := \ldots \)
4: \(p := \ldots \)
5: \(x := \ldots \)
6: \(x := \ldots \)
7: \(*p := \ldots \)
8: \(y := \ldots \)
Termination

• Why is termination important?
• Can we stop the algorithm in the middle and just say we’re done...
• No: we need to run it to completion, otherwise the results are not safe...
Termination

• Assuming we’re doing reaching defs, let’s try to guarantee that the worklist loop terminates, regardless of what the flow function F does

```plaintext
while (worklist.empty.not) do
    let n := worklist.remove_any;
    let info_in := m(n.incoming_edges);
    let info_out := F(n, info_in);
    for i := 0 .. info_out.length-1 do
        if (m(n.outgoing_edges[i]) ≠ info_out[i])
            m(n.outgoing_edges[i]) := info_out[i];
            worklist.add(n.outgoing_edges[i].dst);
```
Termination

• Assuming we’re doing reaching defs, let’s try to guarantee that the worklist loop terminates, regardless of what the flow function F does.

```plaintext
while (worklist.empty.not) do
    let n := worklist.remove_any;
    let info_in := m(n.incoming_edges);
    let info_out := F(n, info_in);
    for i := 0 .. info_out.length-1 do
        let new_info := m(n.outgoing_edges[i]) ∪ info_out[i];
        if (m(n.outgoing_edges[i]) ≠ new_info)
            m(n.outgoing_edges[i]) := new_info;
            worklist.add(n.outgoing_edges[i].dst);
```
Structure of the domain

• We’re using the structure of the domain outside of the flow functions

• In general, it’s useful to have a framework that formalizes this structure

• We will use lattices