Dataflow analysis

• A common framework for expressing algorithms that compute information about a program
• Why is such a framework useful?

Why is such a framework useful?
• Provides a common language, which makes it easier to:
 – communicate your analysis to others
 – compare analyses
 – adapt techniques from one analysis to another
 – reuse implementations (eg: dataflow analysis frameworks)

Control Flow Graphs

• For now, we will use a Control Flow Graph representation of programs
 – each statement becomes a node
 – edges between nodes represent control flow

• Later we will see other program representations
 – variations on the CFG (eg CFG with basic blocks)
 – other graph based representations

Example CFG

x := ...
y := ...
y := ...
p := ...
if (...) {
 ... x ...
 x := ...
 ... y ...
} else {
 ... x ...
 x := ...
 *p := ...
}
... x ...
... y ...
y := ...

An example DFA: reaching definitions

• For each use of a variable, determine what assignments could have set the value being read from the variable

• Information useful for:
 – performing constant and copy prop
 – detecting references to undefined variables
 – presenting “def/use chains” to the programmer
 – building other representations, like the DFG

• Let’s try this out on an example
1: $x := \ldots$
2: $y := \ldots$
3: $y := \ldots$
4: $p := \ldots$

Safety

• When is computed info safe?
• Recall intended use of this info:
 – performing constant and copy prop
 – detecting references to undefined variables
 – presenting “def/use chains” to the programmer
 – building other representations, like the DFG
• Safety:
 – can have more bindings than the “true” answer, but
 can’t miss any

Reaching definitions generalized

• DFA framework geared to computing information at each program point (edge) in the CFG
 – So generalize problem by stating what should be computed at each program point
• For each program point in the CFG, compute the set of definitions (statements) that may reach that point
• Notion of safety remains the same
Reaching definitions generalized

- Computed information at a program point is a set of var → stmt bindings
 - eg: \{ x \rightarrow s_1, x \rightarrow s_2, y \rightarrow s_3 \}

- How do we get the previous info we wanted?
 - if a var \(x \) is used in a stmt whose incoming info is \(in \), then: \{ s \mid (x \rightarrow s) \in in \}

- This is a common pattern
 - generalize the problem to define what information should be computed at each program point
 - use the computed information at the program points to get the original info we wanted

Using constraints to formalize DFA

- Now that we’ve gone through some examples, let’s try to precisely express the algorithms for computing dataflow information
- We’ll model DFA as solving a system of constraints
- Each node in the CFG will impose constraints relating information at predecessor and successor points
- Solution to constraints is result of analysis

Constraints for reaching definitions

- Using may-point-to information:
 \[\text{out} = \text{in} \cup \{ v_{ \rightarrow 5, \rightarrow 6, \rightarrow 7, \rightarrow 8, \rightarrow 9 } \} \]
- Using must-point-to aswell:
 \[\text{out} = \text{in} \cup \{ v_{ \rightarrow 5, \rightarrow 6, \rightarrow 7, \rightarrow 8, \rightarrow 9 } \} \]

Constraints for reaching definitions

- Using may-point-to information:
 \[\text{out} = \text{in} \cup \{ v_{ \rightarrow 5, \rightarrow 6, \rightarrow 7, \rightarrow 8, \rightarrow 9 } \} \]
- Using must-point-to aswell:
 \[\text{out} = \text{in} \cup \{ v_{ \rightarrow 5, \rightarrow 6, \rightarrow 7, \rightarrow 8, \rightarrow 9 } \} \]
Constraints for reaching definitions

\[
\begin{align*}
\text{s: } \text{if } \ldots \quad \text{out}[0] = \text{in} \\
\text{out}[0] & \quad \text{\textbackslash} \quad \text{out}[1] \\
\text{merge} & \quad \text{\textbackslash} \quad \text{out} \\
\text{in}[0] & \quad \text{\textbackslash} \quad \text{in}[1] \\
\text{out} &
\end{align*}
\]

Flow functions

- The constraint for a statement kind s often have the form: \(\text{out} = \text{F}_s(\text{in})\)
- \(\text{F}_s\) is called a flow function
 - other names for it: dataflow function, transfer function
- Given information \(\text{in}\) before statement \(s\), \(\text{F}_s(\text{in})\) returns information after statement \(s\)
- Other formulations have the statement \(s\) as an explicit parameter to \(F\): given a statement \(s\) and some information \(\text{in}\), \(\text{F}(s, \text{in})\) returns the outgoing information after statement \(s\)

Flow functions, some issues

- Issue: what does one do when there are multiple input edges to a node?
- Issue: what does one do when there are multiple outgoing edges to a node?

Flow functions

- Flow functions are a central component of a dataflow analysis
- They state constraints on the information flowing into and out of a statement
- This version of the flow functions is local
 - it applies to a particular statement kind
 - we’ll see global flow functions shortly...
Summary of flow functions

- Flow functions: Given information in before statement s, $F_s(in)$ returns information after statement s
- Flow functions are a central component of a dataflow analysis
- They state constraints on the information flowing into and out of a statement

How to find solutions for d_i?

- This is a forward problem
 - given information flowing in to a node, can determine using the flow function the info flow out of the node
- To solve, simply propagate information forward through the control flow graph, using the flow functions
- What are the problems with this approach?

First problem

- What about the incoming information?
 - d_0 is not constrained
 - so where do we start?
- Need to constrain d_0
- Two options:
 - explicitly state entry information
 - have an entry node whose flow function sets the information on entry (doesn’t matter if entry node has an incoming edge, its flow function ignores any input)

Entry node

s: entry

\[\text{out} = \{ x \to s \mid x \in \text{Formals} \} \]
Second problem

Which order to process nodes in?

• Which order to process nodes in?
• Sort nodes in topological order
 – each node appears in the order after all of its predecessors
• Just run the flow functions for each of the nodes in the topological order
• What’s the problem now?

Second problem, prime

• When there are loops, there is no topological order!
• What to do?
• Let’s try and see what we can do

Worklist algorithm

• Initialize all \(d_i \) to the empty set
• Store all nodes onto a worklist
• while worklist is not empty:
 – remove node \(n \) from worklist
 – apply flow function for node \(n \)
 – update the appropriate \(d_i \), and add nodes whose inputs have changed back onto worklist

Second problem

Which order to process nodes in?

• Which order to process nodes in?
• Sort nodes in topological order
 – each node appears in the order after all of its predecessors
• Just run the flow functions for each of the nodes in the topological order
• What’s the problem now?

Worklist algorithm

• Initialize all \(d_i \) to the empty set
• Store all nodes onto a worklist
• while worklist is not empty:
 – remove node \(n \) from worklist
 – apply flow function for node \(n \)
 – update the appropriate \(d_i \), and add nodes whose inputs have changed back onto worklist
Worklist algorithm

```plaintext
let m: map from edge to computed value at edge
let worklist: work list of nodes

for each edge e in CFG do
  m(e) := Ø

for each node n do
  worklist.add(n)

while (!worklist.empty) do
  let n := worklist.remove_any;
  let info_in := m(n.incoming_edges);
  let info_out := F(n, info_in);
  for i := 0 .. info_out.length - 1 do
    if (m(n.outgoing_edges[i]) ≠ info_out[i])
      m(n.outgoing_edges[i]) := info_out[i];
    worklist.add(n.outgoing_edges[i].dst);
```

Issues with worklist algorithm

- **Ordering**
 - In what order should the original nodes be added to the worklist?
 - What order should nodes be removed from the worklist?
- **Does this algorithm terminate?**

Two issues with worklist algorithm

- **Order of nodes**
 - Topological order assuming back-edges have been removed
 - Reverse depth-first post-order
 - Use an ordered worklist

Termination

- Why is termination important?
 - Can we stop the algorithm in the middle and just say we’re done...
- No: we need to run it to completion, otherwise the results are not safe...
Termination

• Assuming we’re doing reaching defs, let’s try to guarantee that the worklist loop terminates, regardless of what the flow function F does

```plaintext
while (worklist.empty.not) do
    let n := worklist.remove_any;
    let info_in := m(n.incoming_edges);
    let info_out := F(n, info_in);
    for i := 0 .. info_out.length - 1 do
        if (m(n.outgoing_edges[i]) ≠ info_out[i])
            m(n.outgoing_edges[i]) := info_out[i];
        worklist.add(n.outgoing_edges[i].dst);
```

Termination

• Assuming we’re doing reaching defs, let’s try to guarantee that the worklist loop terminates, regardless of what the flow function F does

```plaintext
while (worklist.empty.not) do
    let n := worklist.remove_any;
    let info_in := m(n.incoming_edges);
    let info_out := F(n, info_in);
    for i := 0 .. info_out.length - 1 do
        let new_info := m(n.outgoing_edges[i])
        if (m(n.outgoing_edges[i]) ≠ new_info)
            m(n.outgoing_edges[i]) := new_info;
        worklist.add(n.outgoing_edges[i].dst);
```

Structure of the domain

• We’re using the structure of the domain outside of the flow functions

• In general, it’s useful to have a framework that formalizes this structure

• We will use lattices