1. Show that \(a^2 + a^4 \equiv 0 \pmod{5} \) if \(a \equiv 2 \pmod{5} \) or \(a \equiv 3 \pmod{5} \) or if 5 divides \(a \).

Proof. We want to show that if \(a \equiv 2 \pmod{5} \) or \(a \equiv 3 \pmod{5} \) or if 5 divides \(a \), then \(a^2 + a^4 \equiv 0 \pmod{5} \). In other words, we want to show that \(a^2 + a^4 = 5k + 0 \), where \(k \) is an integer. We will do this by considering each of the three cases separately.

First let’s note some theorems about modular arithmetic that will help us with our proof (Theorem 4, NT-7):

- If \(x \equiv m \pmod{d} \) and \(y \equiv n \pmod{d} \), then \(x + y \equiv m + n \pmod{d} \).
- If \(x \equiv m \pmod{d} \), then \(x^n \equiv m^n \pmod{d} \).

Case 1: \(a \equiv 2 \pmod{5} \)

Since \(a \equiv 2 \pmod{5} \), then \(a^2 \equiv 2^2 \pmod{5} \) and \(a^4 \equiv 2^4 \pmod{5} \). \(a^2 + a^4 \equiv 2^2 + 2^4 \pmod{5} \equiv 20 \pmod{5} \). By the definition of mod, we can write \(a^2 + a^4 = 5b + 20 \) where \(b \) is an integer, or \(a^2 + a^4 = 5(b + 4) + 0 \). Since \(b \) is an integer, \(b + 4 \) must also be an integer. Therefore, if \(a \equiv 2 \pmod{5} \), then \(a^2 + a^4 \equiv 0 \pmod{5} \).

Case 2: \(a \equiv 3 \pmod{5} \)

Since \(a \equiv 3 \pmod{5} \), then \(a^2 \equiv 3^2 \pmod{5} \) and \(a^4 \equiv 3^4 \pmod{5} \). \(a^2 + a^4 \equiv 3^2 + 3^4 \pmod{5} \equiv 90 \pmod{5} \). By the definition of mod, we can write \(a^2 + a^4 = 5c + 90 \) where \(c \) is an integer, or \(a^2 + a^4 = 5(c + 18) + 0 \). Since \(c \) is an integer, \(c + 18 \) must also be an integer. Therefore, if \(a \equiv 3 \pmod{5} \), then \(a^2 + a^4 \equiv 0 \pmod{5} \).

Case 3: 5 divides \(a \)

By the definition of divides, \(a = 5d \), where \(d \) is an integer. So, \(a^2 + a^4 = (5d)^2 + (5d)^4 = 25d^2 + 625d^4 = 5(5d^2 + 125d^4) + 0 \). Since \(d \) is an integer, \(5d^2 + 125d^4 \) must also be an integer. Therefore, if 5 divides \(a \), then \(a^2 + a^4 \equiv 0 \pmod{5} \).

2. Let \(x \) be an integer. Prove that if \(x^2 - 6x + 5 \) is even then \(x \) must be odd.

Proof. Assume for the sake of contradiction that \(x^2 - 6x + 5 \) is even and \(x \) is even. By definition of even, \(x = 2c \) where \(c \) is an integer. By substitution, \(x^2 - 6x + 5 = (2c)^2 - 6(2c) + 5 = 4c^2 - 12c + 5 = 4c^2 - 12c + 4 + 1 = 2(2c^2 - 6c + 2) + 1 \). Since \(2c^2 - 6c + 2 \) is an integer, \(x^2 - 6x + 5 \) must be odd, which is a contradiction.
3. Show that for any posetive number \(a\) and \(b\),

\[
\frac{a + b}{2} \geq \sqrt{ab}.
\]

Proof.

\[
\frac{a + b}{2} \geq \sqrt{ab} \iff \left(\frac{a + b}{2}\right)^2 \geq ab
\]

\[
\iff (a + b)^2 = 4ab \iff a^2 + b^2 + 2ab \geq 4ab
\]

\[
\iff a^2 - 2ab + b^2 \geq 0 \iff (a - b)^2 \geq 0
\]

Since square on any number is greater than zero so the \((a - b)^2 \geq 0\) and so we have the inequality.

4. If \(a\) is an odd integer prove that \(a^2 - 1\) is always divisible by 8.

Proof. If \(a\) is divided by 4 then the possible set of remainders are 0, 1, 2 and 3.

Since \(a\) is odd so the remainder when divided by 4 cannot be 0 or 2. So if \(a\) is an odd integer then the remainder when divided by 4 is 1 or 3.

Now we do case analysis:

Case 1: Let the remainder be 1. So \(a = 4k + 1\) for some integer \(k\). Thus

\[
a^2 = (4k + 1)^2 = 16k^2 + 8k + 1 = 8(2k^2 + k) + 1
\]

So \(a^2 - 1 = 8(2k^2 + k)\) and so \(a^2 - 1\) is divisible by 8.

Case 2: Let the remainder be 3. So \(a = 4k + 3\) for some integer \(k\). Thus

\[
a^2 = (4k + 3)^2 = 16k^2 + 24k + 9 = 8(2k^2 + 3k + 1) + 1
\]

So \(a^2 - 1 = 8(2k^2 + 3k + 1)\) and so \(a^2 - 1\) is divisible by 8.

5. Prove that if \(k\) and \(\ell\) are posetive integers then \(k^2 - \ell^2\) can never be equal to 2.

Proof. If \(a^2 - b^2\) has to be 2 then either both \(a\) and \(b\) has to be even or both have to be odd. If one is even and the other is odd then \(a^2 - b^2\) would be odd.

Now we solve case wise depending on whether both are odd or both are even.
Case 1: Both a and b are even.
Then say $a = 2m$ and $b = 2n$ when m and n are positive integers.
Then $a^2 - b^2 = (2m)^2 - (2n)^2 = 4m^2 - 4n^2 = 4(m^2 - n^2)$.
Now since $(m^2 - n^2)$ is an integer and 4 times an integer cannot be 2 so $a^2 - b^2$ cannot be 2 in this case.

Case 2: Both a and b are odd.
Then say $a = 2m + 1$ and $b = 2n + 1$ when m and n are positive integers. Then
\[a^2 - b^2 = (2m + 1)^2 - (2n + 1)^2 = 4m^2 + 4m + 1 - 4n^2 - 4n - 1 = 4(m^2 + m - n^2 - n). \]
Now since $(m^2 + m - n^2 - n)$ is an integer and 4 times an integer cannot be 2 so $a^2 - b^2$ cannot be 2 in this case.

6. Prove that there are infinitely many primes of the form $6k + 5$. That is, consider the primes which has a remainder 5 when divided by 6. Prove that there are infinitely many such primes.

Solution.

— Left as challenge question —