1. Write down the following integers in base 7:
 (a) 245
 (b) 98
 (c) 2014

Solution:
 (a) 500
 (b) 200
 (c) 5605

2. What is the representation of the number $[2402]_5$ in base 2?

Solution: $[2402]_5 = 2 \cdot 5^3 + 4 \cdot 5^2 + 0 \cdot 5^1 + 2 \cdot 5^0 = [352]_{10} = [101100000]_2$

3. What is $[111111]_2 + [1]_2$?

Solution: $[111111]_2 + [1]_2 = [1000000]_2$

4. What is $[32132]_4 + [22]_4$?

Solution: $[32132]_4 + [22]_4 = [32220]_4$

5. Let n be an integer. Let the remainder when n is divided by b is a. Prove that if n is written in the base b representation as
 $$n = x_0 \cdot b^0 + x_1 \cdot b^1 + \cdots + x_k \cdot b^k,$$
 then x_0 must be equal to a.
Proof. We know that the remainder when \(n \) is divided by \(b \) is \(a \). This means that there is some integer \(q \) such that \(n = bq + a \). By substitution, \(bq + a = x_0 \cdot b^0 + x_1 \cdot b^1 + \cdots + x_k \cdot b^k \). If we factor the right side of the equation, we get \(bq + a = x_0 + b(x_1 + \ldots x_k) \). Then we can see that \(q = x_1 + \ldots x_k \) and \(a = x_0 \).

6. What is the maximum integer that can be represented in base 2 using only 10 bits (that is, what is the largest integer which when represented in base 2 has at most length 10 representation).

Solution: \([1111111111]_2 = [1023]_{10}\)

7. (a) Show that if \(a \) and \(b \) are integers in the range 1 through 256, and the sum of \(a \) and \(b \) is also in this range, then

\[
2^9 \leq (2^9 - a) + (2^9 - b) < 2^{10}.
\]

(b) Explain why it follows that the binary representation of \((2^9 - a) + (2^9 - b)\) has a leading term in the \(2^9 \)th position.

Solution:

(a) We know that \(1 \leq a + b \leq 256 \). By multiplying -1, we get \(-256 \leq -a - b \leq -1 \). By adding \(2^9 + 2^9 = 1024\), we get \(768 \leq (2^9 - a) + (2^9 - b) \leq 1023\). Since \(2^9 = 512 \leq 768\) and \(1023 < 1024 = 2^{10}, 2^9 \leq (2^9 - a) + (2^9 - b) < 2^{10} \).

(b) From part (a), we see that the smallest that \((2^9 - a) + (2^9 - b)\) can be is \(2^9\) which in binary is a 1 in the \(2^9\)th position, followed by zeros. We also know that \((2^9 - a) + (2^9 - b)\) is strictly smaller than \(2^{10}\), so its binary representation must have a leading term in the \(2^9\)th position.