CSE 20

Lecture 15: Proof Techniques
Midterm Review

- Representation of integers in base b
- Logic
- Proof systems:
 - Direct Proof
 - Proof by contradiction
 - Contrapositive
- Sets Theory
- Functions
Midterm Review

- Representation of integers in base b
- Logic
- Proof systems:
 - Direct Proof
 - Proof by contradiction
 - Contrapositive
- Sets Theory
- Functions

NO CALCULATOR, NO CHEAT SHEET
Proof Techniques

To prove statement B from A:

Direct Proof:

$$A = \Rightarrow B$$

If $A = X \lor Y \lor Z$,

$$[(X = \Rightarrow B) \land (Y = \Rightarrow B) \land (Z = \Rightarrow B)] = \Rightarrow (A = \Rightarrow B)$$

Proof by contradiction:

$$(\neg B \land A)$$ gives a contradiction

Proof by Contrapositive:

$A = \Rightarrow B$ is same as proving $\neg B = \Rightarrow \neg A$.
Proof Techniques

To prove statement B from A:

- Direct Proof:

 $$ A \implies B $$

 If $A = X \lor Y \lor Z$

 $$ [(X \implies B) \land (Y \implies B) \land (Z \implies B)] \implies (A \implies B) $$
Proof Techniques

To prove statement B from A:

- Direct Proof:
 \[A \implies B \]
 If $A = X \lor Y \lor Z$
 \[[(X \implies B) \land (Y \implies B) \land (Z \implies B))] \implies (A \implies B) \]

- Proof by contradiction:
 \[(\neg B \land A) \text{ gives a contradiction} \]
Proof Techniques

To prove statement B from A:

- **Direct Proof:**
 \[A \implies B \]

 If $A = X \lor Y \lor Z$

 \[[(X \implies B) \land (Y \implies B) \land (Z \implies B))] \implies (A \implies B) \]

- **Proof by contradiction:**
 \((\neg B \land A)\text{ gives a contradiction}\)

- **Proof by Contrapositive:** $A \implies B$ is same as proving $\neg B \implies \neg A$.
Is $\sqrt{2}$ a rational?

Earlier in class we used proof by contradiction to prove that $\sqrt{2}$ is not rational.
A number x is rational if it can be written as p/q where p and q are integers.

$1/\text{Rational}$ is rational.

$1/(\text{not rational})$ is not rational.

$1/\sqrt{2}$ is not rational.

$\text{Not Rational} \times \text{Not Rational} = ?$

Eg: \[\sqrt{2} \times (1/\sqrt{2}) \text{ is rational.} \]
Rational Numbers

A number x is rational if it can be written as p/q where p and q are integers.

- Rational \times Rational = Rational

- Rational \times Not Rational = Not Rational

- So $(-\sqrt{2})$ is not rational.

- $1/\text{Rational}$ is rational.

- $1/(\text{not rational})$ is not rational.

- $1/\sqrt{2}$ is not rational.

- Not Rational \times Not Rational = ?

Eg:

$\sqrt{2} \times (1/\sqrt{2})$ is rational.
A number x is rational if it can be written as p/q where p and q are integers.

- Rational \times Rational $= \text{Rational}$
- Rational \times Not Rational $= \text{Not Rational}$.
A number x is rational if it can be written as p/q where p and q are integers.

- Rational \times Rational = Rational
- Rational \times Not Rational = Not Rational.

So $(-\sqrt{2})$ is not rational.
Rational Numbers

A number x is rational if it can be written as p/q where p and q are integers.

- Rational \times Rational = Rational
- Rational \times Not Rational = Not Rational. So $(-\sqrt{2})$ is not rational.
- $1/Rational$ is rational.
A number x is rational if it can be written as p/q where p and q are integers.

- Rational \times Rational = Rational
- Rational \times Not Rational = Not Rational.

So $(-\sqrt{2})$ is not rational.

- $1/Rational$ is rational.
- $1/(not\ rational)$ is not rational.
Rational Numbers

A number \(x \) is rational if it can be written as \(p/q \) where \(p \) and \(q \) are integers.

- Rational \(\times \) Rational = Rational
- Rational \(\times \) Not Rational = Not Rational.
 So \((-\sqrt{2}) \) is not rational.
- \(1/Rational \) is rational.
- \(1/(not\ rational) \) is not rational. \(1/\sqrt{2} \) is not rational.
Rational Numbers

A number x is rational if it can be written as p/q where p and q are integers.

- Rational \times Rational = Rational
- Rational \times Not Rational = Not Rational.
 So $(-\sqrt{2})$ is not rational.
- $1/Rational$ is rational.
- $1/(not\ rational)$ is not rational. $1/\sqrt{2}$ is not rational.
- Not Rational \times Not Rational = ?
Rational Numbers

A number x is rational if it can be written as p/q where p and q are integers.

- Rational \times Rational = Rational
- Rational \times Not Rational = Not Rational.
 So $(-\sqrt{2})$ is not rational.
- $1/Rational$ is rational.
- $1/(not\ rational)$ is not rational. $1/\sqrt{2}$ is not rational.
- Not Rational \times Not Rational = ?

Eg: $\sqrt{2} \times (1/\sqrt{2})$ is rational.
Is $\sqrt{6}$ rational?

Prove that $\sqrt{6}$ is not rational.
A number x is rational if it can be written as p/q where p and q are integers.
A number \(x \) is rational if it can be written as \(p/q \) where \(p \) and \(q \) are integers.

- Rational + Rational = Rational

\((2 - \sqrt{2})\) is not rational.

Not Rational + Not Rational = ?

Eg:
\[\sqrt{2} + (2 - \sqrt{2}) \text{ is rational.} \]
A number x is rational if it can be written as p/q where p and q are integers.

- Rational + Rational = Rational
- Rational + Not Rational = Not Rational.
A number x is rational if it can be written as p/q where p and q are integers.

- Rational + Rational = Rational
- Rational + Not Rational = Not Rational.
 $(2 - \sqrt{2})$ is not rational.
- Not Rational + Not Rational = ?
Rational Numbers

A number x is rational if it can be written as p/q where p and q are integers.

- Rational + Rational = Rational
- Rational + Not Rational = Not Rational.
 $(2 - \sqrt{2})$ is not rational.
- Not Rational + Not Rational = ?

Eg: $\sqrt{2} + (2 - \sqrt{2})$ is rational.
Is \(\sqrt{2} + \sqrt{3} \) a rational?

Prove that \(\sqrt{2} + \sqrt{3} \) is not rational.

To prove this by contradiction, what should be assumed?

\begin{enumerate}
\item A \(\sqrt{2} + \sqrt{3} \) is not a rational number.
\item B \(\sqrt{2} + \sqrt{3} \) is a rational number.
\item C Either \(\sqrt{2} \) or \(\sqrt{3} \) is a rational number.
\item D Both \(\sqrt{2} \) and \(\sqrt{3} \) are rational numbers.
\end{enumerate}
Is $\sqrt{2} + \sqrt{3}$ a rational?

Prove that $\sqrt{2} + \sqrt{3}$ is not rational.
To proof this by contradiction what should be assume.

A $\sqrt{2} + \sqrt{3}$ is not a rational number.
B $\sqrt{2} + \sqrt{3}$ is a rational number.
C Either $\sqrt{2}$ or $\sqrt{3}$ is a rational number.
D Both $\sqrt{2}$ and $\sqrt{3}$ are a rational number.
Is $\sqrt{2} + \sqrt{3}$ a rational?

Prove that $\sqrt{2} + \sqrt{3}$ is not rational.
Is $\sqrt{2} + \sqrt{3}$ a rational?

Prove that $\sqrt{2} + \sqrt{3}$ is not rational.
To prove by contradiction what do have to prove:
Is $\sqrt{2} + \sqrt{3}$ a rational?

Prove that $\sqrt{2} + \sqrt{3}$ is not rational.

To prove by contradiction what do have to prove:

- Let $\sqrt{2} + \sqrt{3}$ be a rational number
Is $\sqrt{2} + \sqrt{3}$ a rational?

Prove that $\sqrt{2} + \sqrt{3}$ is not rational.
To prove by contradiction what do have to prove:

- Let $\sqrt{2} + \sqrt{3}$ be a rational number
- $\sqrt{2} + \sqrt{3}$ can be written as $\frac{p}{q}$ for any positive integer p and q.
Is $\sqrt{2} + \sqrt{3}$ a rational?

Prove that $\sqrt{2} + \sqrt{3}$ is not rational.
To prove by contradiction what do have to prove:
- Let $\sqrt{2} + \sqrt{3}$ be a rational number
- $\sqrt{2} + \sqrt{3}$ can be written as $\frac{p}{q}$ for any positive integer p and q.
- If $\sqrt{2} + \sqrt{3} = \frac{p}{q}$ for some positive integers p and q then there is some problem
Is $\sqrt{2} + \sqrt{3}$ a rational?

Prove that $\sqrt{2} + \sqrt{3}$ is not rational.

- Let $\sqrt{2} + \sqrt{3} = \frac{p}{q}$
Is $\sqrt{2} + \sqrt{3}$ a rational?

Prove that $\sqrt{2} + \sqrt{3}$ is not rational.

- Let $\sqrt{2} + \sqrt{3} = p/q$
- $\iff \sqrt{3} = p/q - \sqrt{2}$
Is $\sqrt{2} + \sqrt{3}$ a rational?

Prove that $\sqrt{2} + \sqrt{3}$ is not rational.

- Let $\sqrt{2} + \sqrt{3} = p/q$
- $\iff \sqrt{3} = p/q - \sqrt{2}$
- $\iff 3 = (p^2/q^2) - 2\sqrt{2}p/q + 2$

So $\sqrt{2}$ is a rational since $(p^2 - q^2)$ and $2pq$ are integers.
Is $\sqrt{2} + \sqrt{3}$ a rational?

Prove that $\sqrt{2} + \sqrt{3}$ is not rational.

- Let $\sqrt{2} + \sqrt{3} = \frac{p}{q}$
- $\iff \sqrt{3} = \frac{p}{q} - \sqrt{2}$
- $\iff 3 = \left(\frac{p^2}{q^2}\right) - 2\sqrt{2}\frac{p}{q} + 2$
- $\iff 2\sqrt{2}\frac{p}{q} = \left(\frac{p^2}{q^2}\right) - 1 = \left(\frac{p^2 - q^2}{q^2}\right)$
Is $\sqrt{2} + \sqrt{3}$ a rational?

Prove that $\sqrt{2} + \sqrt{3}$ is not rational.

- Let $\sqrt{2} + \sqrt{3} = p/q$
- $\iff \sqrt{3} = p/q - \sqrt{2}$
- $\iff 3 = (p^2/q^2) - 2\sqrt{2}p/q + 2$
- $\iff 2\sqrt{2}p/q = (p^2/q^2) - 1 = (p^2 - q^2)/q^2$
- $\iff \sqrt{2} = (p^2 - q^2)/(2pq) = p'/q'$

So $\sqrt{2}$ is a rational since $(p^2 - q^2)$ and $2pq$ are integers.
Is $\sqrt{2} + \sqrt{3}$ a rational?

Prove that $\sqrt{2} + \sqrt{3}$ is not rational.

- Let $\sqrt{2} + \sqrt{3} = p/q$
- $\iff \sqrt{3} = p/q - \sqrt{2}$
- $\iff 3 = (p^2/q^2) - 2\sqrt{2}p/q + 2$
- $\iff 2\sqrt{2}p/q = (p^2/q^2) - 1 = (p^2 - q^2)/q^2$

$\iff \sqrt{2} = \frac{(p^2 - q^2)}{2pq} = \frac{p'}{q'}$

So $\sqrt{2}$ is a rational since $(p^2 - q^2)$ and $2pq$ are integers.
Is $\sqrt{2} + \sqrt{3}$ a rational?

Prove that $\sqrt{2} + \sqrt{3}$ is not rational.

So if $\sqrt{2} + \sqrt{3}$ is rational then $\sqrt{2}$ is rational which is a contradiction.
Is $\sqrt{2} + \sqrt{3}$ a rational?

Prove that $\sqrt{2} + \sqrt{3}$ is not rational.

So If $\sqrt{2} + \sqrt{3}$ is rational then $\sqrt{2}$ is rational which is a contradiction.

Thus our initial assumption was wrong. Thus $\sqrt{2} + \sqrt{3}$ is not a rational number.
Is $\sqrt{3}$ rational?

Prove that $\sqrt{3}$ is not rational.

To proof this by contradiction what should be assume.

A $\sqrt{3}$ is not rational. So $\sqrt{3} = \text{non-integer}/\text{non-integer}$.
B $\sqrt{3}$ is a rational number. So $\sqrt{3} = \text{integer}/\text{integer}$.
C $\sqrt{3}$ is a not rational. So $\sqrt{3} = \text{non-integer}/\text{integer}$.
D $\sqrt{3}$ is a not rational. So $\sqrt{3} = \text{integer}/\text{non-integer}$.
Prove $\sqrt{3}$ is not rational

We prove by contradiction.

Let $\sqrt{3} = \frac{p}{q}$

We can assume both p and q cannot be divisible by 3.

Now $\sqrt{3} = \frac{p}{q} \iff 3 = \frac{p^2}{q^2} \iff 3q^2 = p^2$

We prove by case by case analysis that if p and q are integers, not both divisible by 3 then $3q^2$ cannot be equal to p^2 and hence we get a contradiction.
Prove $\sqrt{3}$ is not rational

We prove by contradiction.

- Let $\sqrt{3} = p/q$
Prove $\sqrt{3}$ is not rational

We prove by contradiction.

- Let $\sqrt{3} = \frac{p}{q}$
- We can assume p and q has no common factors else we can factor it out.
- In other words we can assume both p and q cannot be divisible by 3.
Prove $\sqrt{3}$ is not rational

We prove by contradiction.

- Let $\sqrt{3} = p/q$
- We can assume p and q has no common factors else we can factor it out.
- In other words we can assume both p and q cannot be divisible by 3.
- Now $\sqrt{3} = p/q \iff 3 = p^2/q^2 \iff 3q^2 = p^2$
Prove $\sqrt{3}$ is not rational

We prove by contradiction.

- Let $\sqrt{3} = \frac{p}{q}$
- We can assume p and q has no common factors else we can factor it out.
- In other words we can assume both p and q cannot be divisible by 3.
- Now $\sqrt{3} = \frac{p}{q} \iff 3 = \frac{p^2}{q^2} \iff 3q^2 = p^2$
- We prove by case by case analysis that if p and q are integers, not both divisible by 3 then $3q^2$ cannot be equal to p^2 and hence we get a contradiction.
Prove \(\sqrt{3} \) is not rational

We prove by contradiction.

- Let \(\sqrt{3} = p/q \)
- We prove by case by case analysis that if \(p \) and \(q \) are integers, not both divisible by 3 then \(3q^2 \) cannot be equal to \(p^2 \) and hence we get a contradiction.
Prove $\sqrt{3}$ is not rational

We prove by contradiction.

- Let $\sqrt{3} = p/q$
- We prove by case by case analysis that if p and q are integers, not both divisible by 3 then $3q^2$ cannot be equal to p^2 and hence we get a contradiction.
- Case 1: Both p and q are not divisible by 3.
Prove $\sqrt{3}$ is not rational

We prove by contradiction.

- Let $\sqrt{3} = p/q$
- We prove by case by case analysis that if p and q are integers, not both divisible by 3 then $3q^2$ cannot be equal to p^2 and hence we get a contradiction.
- Case 1: Both p and q are not divisible by 3.
- Case 2: p is not-divisible by 3 and q is divisible by 3.
- Case 3: p is divisible by 3 and q is not divisible by 3.

If for all the above cases we prove that $3q^2 = p^2$ is not a possibility then we are done.
Prove $\sqrt{3}$ is not rational

We prove by contradiction.

- Let $\sqrt{3} = p/q$
- We prove by case by case analysis that if p and q are integers, not both divisible by 3 then $3q^2$ cannot be equal to p^2 and hence we get a contradiction.
- Case 1: Both p and q are not divisible by 3.
- Case 2: p is not-divisible by 3 and q is divisible by 3.
- Case 3: p is divisible by 3 and q is not divisible by 3.
Prove $\sqrt{3}$ is not rational

We prove by contradiction.

- Let $\sqrt{3} = p/q$
- We prove by case by case analysis that if p and q are integers, not both divisible by 3 then $3q^2$ cannot be equal to p^2 and hence we get a contradiction.

 - Case 1: Both p and q are not divisible by 3.
 - Case 2: p is not-divisible by 3 and q is divisible by 3.
 - Case 3: p is divisible by 3 and q is not divisible by 3.

If for all the above cases we prove that $3q^2 = p^2$ is not a possibility then we are done.
Prove $\sqrt{3}$ is not rational

We prove by contradiction.

- Let $\sqrt{3} = p/q$
- We prove by case by case analysis that if p and q are integers, not both divisible by 3 then $3q^2$ cannot be equal to p^2 and hence we get a contradiction.
Prove $\sqrt{3}$ is not rational

We prove by contradiction.

- Let $\sqrt{3} = p/q$
- We prove by case by case analysis that if p and q are integers, not both divisible by 3 then $3q^2$ cannot be equal to p^2 and hence we get a contradiction.
- Case 1: Both p and q are not divisible by 3.
Prove $\sqrt{3}$ is not rational

We prove by contradiction.

- Let $\sqrt{3} = p/q$
- We prove by case by case analysis that if p and q are integers, not both divisible by 3 then $3q^2$ cannot be equal to p^2 and hence we get a contradiction.
- Case 1: Both p and q are not divisible by 3.

$3q^2$ is divisible by 3.
We prove by contradiction.

- Let $\sqrt{3} = p/q$
- We prove by case by case analysis that if p and q are integers, not both divisible by 3 then $3q^2$ cannot be equal to p^2 and hence we get a contradiction.
- Case 1: Both p and q are not divisible by 3.

\[
3q^2 \text{ is divisible by 3.} \\
p^2 \text{ is not divisible by 3.}
\]
Prove $\sqrt{3}$ is not rational

We prove by contradiction.

- Let $\sqrt{3} = p/q$
- We prove by case by case analysis that if p and q are integers, not both divisible by 3 then $3q^2$ cannot be equal to p^2 and hence we get a contradiction.
- Case 1: Both p and q are not divisible by 3.

$3q^2$ is divisible by 3.
p^2 is not divisible by 3.
So $3q^2$ cannot be equal to p^2.
Prove $\sqrt{3}$ is not rational

We prove by contradiction.

- Let $\sqrt{3} = p/q$
- We prove by case by case analysis that if p and q are integers, not both divisible by 3 then $3q^2$ cannot be equal to p^2 and hence we get a contradiction.
Prove $\sqrt{3}$ is not rational

We prove by contradiction.

- Let $\sqrt{3} = p/q$
- We prove by case by case analysis that if p and q are integers, not both divisible by 3 then $3q^2$ cannot be equal to p^2 and hence we get a contradiction.
- Case 2: p is not-divisible by 3 and q is divisible by 3.
Prove $\sqrt{3}$ is not rational

We prove by contradiction.

- Let $\sqrt{3} = \frac{p}{q}$
- We prove by case by case analysis that if p and q are integers, not both divisible by 3 then $3q^2$ cannot be equal to p^2 and hence we get a contradiction.
- Case 2: p is not-divisible by 3 and q is divisible by 3.

$3q^2$ is divisible by 3.
Prove $\sqrt{3}$ is not rational

We prove by contradiction.

- Let $\sqrt{3} = p/q$
- We prove by case by case analysis that if p and q are integers, not both divisible by 3 then $3q^2$ cannot be equal to p^2 and hence we get a contradiction.
- Case 2: p is not-divisible by 3 and q is divisible by 3.

$3q^2$ is divisible by 3.
p^2 is not divisible by 3.
Prove $\sqrt{3}$ is not rational

We prove by contradiction.

- Let $\sqrt{3} = p/q$
- We prove by case by case analysis that if p and q are integers, not both divisible by 3 then $3q^2$ cannot be equal to p^2 and hence we get a contradiction.
- Case 2: p is not-divisible by 3 and q is divisible by 3.

$3q^2$ is divisible by 3.
p^2 is not divisible by 3.
So $3q^2$ cannot be equal to p^2.
Prove $\sqrt{3}$ is not rational

We prove by contradiction.

- Let $\sqrt{3} = p/q$
- We prove by case by case analysis that if p and q are integers, not both divisible by 3 then $3q^2$ cannot be equal to p^2 and hence we get a contradiction.
Prove $\sqrt{3}$ is not rational

We prove by contradiction.

- Let $\sqrt{3} = p/q$
- We prove by case by case analysis that if p and q are integers, not both divisible by 3 then $3q^2$ cannot be equal to p^2 and hence we get a contradiction.
- Case 3: p is divisible by 3 and q is not-divisible by 3.
Prove $\sqrt{3}$ is not rational

We prove by contradiction.

- Let $\sqrt{3} = p/q$
- We prove by case by case analysis that if p and q are integers, not both divisible by 3 then $3q^2$ cannot be equal to p^2 and hence we get a contradiction.
- Case 3: p is divisible by 3 and q is not-divisible by 3.

Let $p = 3k$.
Prove $\sqrt{3}$ is not rational

We prove by contradiction.

1. Let $\sqrt{3} = p/q$
2. We prove by case by case analysis that if p and q are integers, not both divisible by 3 then $3q^2$ cannot be equal to p^2 and hence we get a contradiction.
3. Case 3: p is divisible by 3 and q is not-divisible by 3.

Let $p = 3k$. So

$3q^2 = p^2 \iff 3q^2 = 9k^2 \iff q^2 = 3k^2$ $3k^2$ is divisible by 3.
Prove $\sqrt{3}$ is not rational

We prove by contradiction.

- Let $\sqrt{3} = p/q$
- We prove by case by case analysis that if p and q are integers, not both divisible by 3 then $3q^2$ cannot be equal to p^2 and hence we get a contradiction.
- Case 3: p is divisible by 3 and q is not-divisible by 3.

Let $p = 3k$. So

$3q^2 = p^2 \iff 3q^2 = 9k^2 \iff q^2 = 3k^2$ 3k^2 is divisible by 3.

q^2 is not divisible by 3.
Prove $\sqrt{3}$ is not rational

We prove by contradiction.

- Let $\sqrt{3} = p/q$
- We prove by case by case analysis that if p and q are integers, not both divisible by 3 then $3q^2$ cannot be equal to p^2 and hence we get a contradiction.
- Case 3: p is divisible by 3 and q is not-divisible by 3.

Let $p = 3k$. So

$$3q^2 = p^2 \iff 3q^2 = 9k^2 \iff q^2 = 3k^2$$

3k^2 is divisible by 3.
q^2 is not divisible by 3.
So $3k^2$ cannot be equal to q^2.
Prove $\sqrt{3}$ is not rational

We prove by contradiction.

- Let $\sqrt{3} = p/q$
- We prove by case by case analysis that if p and q are integers, not both divisible by 3 then $3q^2$ cannot be equal to p^2 and hence we get a contradiction.
- Case 3: p is divisible by 3 and q is not-divisible by 3.

Let $p = 3k$. So

$3q^2 = p^2 \iff 3q^2 = 9k^2 \iff q^2 = 3k^2$ $3k^2$ is divisible by 3.

q^2 is not divisible by 3.
So $3k^2$ cannot be equal to q^2.
So $3q^2$ cannot be equal to p^2.
Overview of the proof that \(\sqrt{3} \) is not rational

We prove by contradiction.

Let \(\sqrt{3} = \frac{p}{q} \). We can assume \(p \) and \(q \) has no common factors else we can factor it out. In other words we can assume both \(p \) and \(q \) cannot be divisible by 3.

Now \(\sqrt{3} = \frac{p}{q} \iff 3 = \frac{p^2}{q^2} \iff 3q^2 = p^2 \).

We prove by case by case analysis that if \(p \) and \(q \) are integers, not both divisible by 3 then \(3q^2 \) cannot be equal to \(p^2 \) and hence we get a contradiction.
Overview of the proof that $\sqrt{3}$ is not rational

We prove by contradiction.

- Let $\sqrt{3} = p/q$

We can assume p and q has no common factors else we can factor it out. In other words we can assume both p and q cannot be divisible by 3.

$\sqrt{3} = p/q \iff 3 = p^2/q^2 \iff 3q^2 = p^2$.

We prove by case by case analysis that if p and q are integers, not both divisible by 3 then $3q^2$ cannot be equal to p^2 and hence we get a contradiction.
Overview of the proof that $\sqrt{3}$ is not rational

We prove by contradiction.

- Let $\sqrt{3} = p/q$
- We can assume p and q has no common factors else we can factor it out.
- In other words we can assume both p and q cannot be divisible by 3.
Overview of the proof that $\sqrt{3}$ is not rational

We prove by contradiction.

- Let $\sqrt{3} = p/q$
- We can assume p and q has no common factors else we can factor it out.
- In other words we can assume both p and q cannot be divisible by 3.
- Now $\sqrt{3} = p/q \iff 3 = p^2/q^2 \iff 3q^2 = p^2$
Overview of the proof that $\sqrt{3}$ is not rational

We prove by contradiction.

- Let $\sqrt{3} = p/q$
- We can assume p and q has no common factors else we can factor it out.
- In other words we can assume both p and q cannot be divisible by 3.
- Now $\sqrt{3} = p/q \iff 3 = p^2/q^2 \iff 3q^2 = p^2$
- We prove by case by case analysis that if p and q are integers, not both divisible by 3 then $3q^2$ cannot be equal to p^2 and hence we get a contradiction.
Problems for practice

- Prove that $\sqrt{6}$ is not rational.
- Prove that $\sqrt{5}$ is not rational.
Challenge Problem for Assignment 2

Prove that there are infinitely many primes of form $5 \pmod{6}$.
Challenge Problem for Assignment 2

Prove that there are infinitely many primes of form \(5(\text{mod } 6)\).

We have proved that primes are either 2 or 3 or \(1(\text{mod } 6)\) or \(5(\text{mod } 6)\).
Challenge Problem for Assignment 2

Prove that there are infinitely many primes of form $5 \pmod{6}$.

We have proved that primes are either 2 or 3 or $1 \pmod{6}$ or $5 \pmod{6}$.

We have seen that there are infinitely many primes.
Prime distribution

- 2
- 3
- 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, ...
- 7, 13, 19, 31, 37, 43, 61, 67, 73, 79,
Proof of Infiniteness of primes

Let there be finitely many primes: let them be

\[p_1, p_2, \ldots, p_t \]

With \(p_t \) being the largest prime

Then we prove that in that case: \((p_1 \times p_2 \times \cdots \times p_t) + 1 \) is a prime.
Proof of Infiniteness of primes

Let there be finitely many primes: let them be

\[p_1, p_2, \ldots, p_t \]

With \(p_t \) being the largest prime

Then we prove that in that case: \((p_1 \times p_2 \times \cdots \times p_t) + 1\) is a prime.

Hence we have an even larger prime and hence that contradicts that \(p_t \) was the largest prime. And so by contradiction we are done.