Announcements

- HW0 due on Thursday
- Readings up on eReserves
- The project

Pattern classification

Biometrics

CSE 190

Lecture 3

Bayesian Decision Theory
Continuous Features
(Sections 2.1-2.2)

Introduction

- The sea bass/salmon example

 - State of nature, prior
 - State of nature is a random variable
 - The catch of salmon and sea bass is equiprobable
 - $P(o_1), P(o_2)$ Prior probabilities
 - $P(o_1) = P(o_2)$ (uniform priors)
 - $P(o_1) + P(o_2) = 1$ (exclusivity and exhaustivity)
• Decision rule with only the prior information
 • Decide ω_1 if $P(\omega_1) > P(\omega_2)$ otherwise decide ω_2

• Use of the class–conditional information
 • $P(x \mid \omega_1)$ and $P(x \mid \omega_2)$ describe the difference in lightness between populations of sea-bass and salmon

• Posterior, likelihood, evidence
 • $P(\omega_j \mid x) = \frac{P(x \mid \omega_j) P(\omega_j)}{P(x)}$ (BAYES RULE)
 • In words, this can be said as:
 Posterior = (Likelihood * Prior) / Evidence
 • Where in case of two categories
 $$P(x) = \sum_{j=1}^{2} P(x \mid \omega_j) P(\omega_j)$$

• Since decision rule is optimal for each feature value X, there is no better rule for all x.

• Intuitive decision rule given the posterior probabilities:
 Given x:
 - if $P(\omega_1 \mid x) > P(\omega_2 \mid x)$ True state of nature = ω_1
 - if $P(\omega_1 \mid x) < P(\omega_2 \mid x)$ True state of nature = ω_2

Why do this?: Whenever we observe a particular x, the probability of error is:
 - $P(error \mid x) = P(\omega_1 \mid x)$ if we decide ω_2
 - $P(error \mid x) = P(\omega_2 \mid x)$ if we decide ω_1

The Maximum A Posteriori (MAP) decision rule is

$$\hat{\omega} = \arg\max_{\omega_j} P(\omega_j \mid x)$$

$$= \arg\max_{\omega_j} \frac{P(x \mid \omega_j) P(\omega_j)}{P(x)}$$

Bayes Rule

$$= \arg\max_{\omega_j} P(x \mid \omega_j) P(\omega_j)$$

Because $P(x)$ is not a function of ω_j

$P(x \mid \omega_j) P(\omega_j)$ is just a scaled version $P(x \mid \omega_j)$
Bayesian Decision Theory – Continuous Features

Generalization of the preceding ideas

- Use of more than one feature
- Use more than two states of nature
- Allowing actions and not only decide on the state of nature
- Introduce a loss of function (more general than the probability of error)
- Allowing actions other than classification primarily allows the possibility of rejection
- Refusing to make a decision in close or bad cases!
- Letting loss function state how costly each action taken is

Example

What is the Expected Loss for action α_i?

For any given x the expected loss for action α_i is

$$R(\alpha_i | x) = \sum_{j=1}^{c} \lambda(\alpha_i | \omega_j) P(\omega_j | x)$$

$R(\alpha_i | x)$ is called the Conditional Risk (or Expected Loss)

Overall risk

$$R = \int R(\alpha(x) | x) P(x) dx$$

Minimizing R \iff Minimizing $R(\alpha_i | x)$ for $i = 1, \ldots, a$

$$R(\alpha_i | x) = \sum_{j=1}^{c} \lambda(\alpha_i | \omega_j) P(\omega_j | x)$$

for $i = 1, \ldots, a$

Given a measured feature vector x, which action should we take?

Select the action α_i for which $R(\alpha_i | x)$ is minimum

$$\hat{\alpha}(x) = \arg \min_{\alpha_i} R(\alpha_i | x)$$

$$= \arg \min_{\alpha_i} \sum_{j=1}^{c} \lambda(\alpha_i | \omega_j) P(\omega_j | x)$$
Example: Two-Category Classification

\(\alpha_1 \): deciding \(\omega_1 \)

\(\alpha_2 \): deciding \(\omega_2 \)

\(\lambda_{ij} = \lambda_j(\alpha_i | \omega_j) \)

loss incurred for deciding \(\omega_i \) when the true state of nature is \(\omega_j \)

Conditional risk:

\[
R(\alpha_1 | x) = \lambda_{11}P(\omega_1 | x) + \lambda_{12}P(\omega_2 | x)
\]

\[
R(\alpha_2 | x) = \lambda_{21}P(\omega_1 | x) + \lambda_{22}P(\omega_2 | x)
\]

Our rule is the following:

if \(R(\alpha_1 | x) < R(\alpha_2 | x) \)

\(\lambda_{11}P(\omega_1 | x) + \lambda_{12}P(\omega_2 | x) < \lambda_{21}P(\omega_1 | x) + \lambda_{22}P(\omega_2 | x) \)

action \(\alpha_2 \): “decide \(\omega_2 \)” is taken

This results in the equivalent rule:

Decide \(\omega_1 \) if:

\[
(\lambda_{21} - \lambda_{11}) P(x | \omega_1) P(\omega_1) > (\lambda_{12} - \lambda_{22}) P(x | \omega_2) P(\omega_2)
\]

Decide \(\omega_2 \) otherwise

On to higher dimensions!