From Nearest to Linear Discriminant Functions

Biometrics
CSE 190
Lecture 10

Announcements

• HW2 due today
• Literature review due next Tuesday.
• Most of last two lecture was on the blackboard.
• Extra class Tomorrow, 2:00-3:00, CSE4140
• No class next Thursday, 5/15

Non-Parametric Density Estimation

• Given a collection of n samples, estimate the probability density.
 - Parzen Windows
 - K-th nearest neighbor

• Main ideas:
 1. As number of samples (n) approaches infinity, estimated density should approach true density
 2. Approximated density should be "reasonable" for finite n.

K-th Nearest Neighbor Density Estimation

![K-th Nearest Neighbor Density Estimation](image)

Pattern Classification, Ch4 (Part 1)

– The k – nearest-neighbor rule

• Goal: Classify x by assigning it the label most frequently represented among the k nearest samples and use a voting scheme
The nearest-neighbor rule

- Let \(D_n = \{x_1, x_2, \ldots, x_n\} \) be a set of \(n \) labeled prototypes
- Let \(x' \in D_n \) be the closest prototype to a test point \(x \) then the nearest-neighbor rule for classifying \(x \) is to assign it the label associated with \(x' \)
- The nearest-neighbor rule leads to an error rate greater than the minimum possible: the Bayes rate
- If the number of prototype is large (unlimited), the error rate of the nearest-neighbor classifier is never worse than twice the Bayes rate (it can be demonstrated!
- If \(n \to \infty \), it is always possible to find \(x' \) sufficiently close so that:
 \[P(\omega_i | x') = P(\omega_i | x) \]

Whitening Transform

See blackboard

Linear Discriminant Functions (Sections 5.1-5.2)

- Definition
 A linear discriminant function is a linear combination of the components of \(x \)
 \[g(x) = w^T x + w_0 \quad (1) \]
 where \(w \) is the weight vector and \(w_0 \) the bias
- A two-category classifier with a discriminant function of the form (1) uses the following rule:
 Decide \(\omega_1 \) if \(g(x) > 0 \) and \(\omega_2 \) if \(g(x) < 0 \)
 \[\leftrightarrow \text{ Decide } \omega_1 \text{ if } w^T x > -w_0 \text{ and } \omega_2 \text{ otherwise} \]
 If \(g(x) = 0 \) \(\Rightarrow x \) is assigned to either class
• The equation \(g(x) = 0 \) defines the decision surface that separates points assigned to the category \(\omega_1 \) from points assigned to the category \(\omega_2 \).

• When \(g(x) \) is linear, the decision surface is a hyperplane.

• Algebraic measure of the distance from \(x \) to the hyperplane.

The multi-category case

• We define \(c \) linear discriminant functions

\[
g_i(x) = w_i^T x + w_{i0} \quad i = 1, \ldots, c
\]

and assign \(x \) to \(\omega_i \) if \(g_i(x) > g_j(x) \) \(\forall j \neq i \); in case of ties, the classification is undefined.

• In this case, the classifier is a "linear machine".

• A linear machine divides the feature space into \(c \) decision regions, with \(g_i(x) \) being the largest discriminant if \(x \) is in the region \(R_i \).

• For a two contiguous regions \(R_i \) and \(R_j \), the boundary that separates them is a portion of hyperplane \(H_{ij} \) defined by:

\[
(g_i(x) = g_j(x)) \iff (w_i - w_j)^T x + (w_{i0} - w_{j0}) = 0
\]

• \(w_i - w_j \) is normal to \(H_{ij} \) and

\[
d(x, H_{ij}) = \frac{g_i - g_j}{\|w_i - w_j\|}
\]

It is easy to show that the decision regions for a linear machine are convex, this restriction limits the flexibility and accuracy of the classifier.

Perceptron

Linear, threshold units

\[
\phi(x_1, \ldots, x_n) = \begin{cases} 1 & \text{if } w_1 x_1 + \cdots + w_n x_n > \theta \\ -1 & \text{otherwise.} \end{cases}
\]
The threshold can be easily forced to 0 by introducing an additional weight input $W_0 = \theta$.

$$o(x_1, \ldots, x_n) = \begin{cases} 1 & \text{if } w_0 + w_1x_1 + \cdots + w_nx_n > 0 \\ -1 & \text{otherwise} \end{cases}$$

How powerful is a perceptron?

Threshold = 0

Inverter

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Boolean AND

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Boolean OR

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Boolean XOR

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Concept Space & Linear Separability

Linear Separability

$w_1 x_1 + w_2 x_2 \geq \theta$ for positive o (AND)

$w_1 x_1 + w_2 x_2 \leq \theta$ for negative o (XOR)

Training Perceptron

Perceptron Training Rule

Given training data of pairs $<\text{input features, output}>$

$$w'_i \leftarrow w_i + \Delta w_i$$

$$\Delta w_i = \eta (t - o) x_i$$

Where:

- t is target value
- o is perceptron output
- Δ is small constant (e.g., $\Delta = 0.1$)
- η is learning rate

Converges if...

- training data linearly separable
- step size η sufficiently small
- no "hidden" units

Gradient Descent

Learn w_i’s that minimize squared error

$$E[\overline{w}] = \frac{1}{2} \sum_{j=0}^{n} (t_j - o_j)^2$$

T_j: Training label

O_j: Output of net with training input
Gradient Descent
- To find the best direction in the feature space, we compute the gradient of E with respect to each of the components of \hat{w}:
 \[\nabla E(\hat{w}) = \left[\frac{\partial E}{\partial w_1}, \frac{\partial E}{\partial w_2}, \ldots, \frac{\partial E}{\partial w_n} \right] \]
- This vector specifies the direction that produces the steepest increase in E.
- We want to modify \hat{w} in the direction of $-\nabla E(\hat{w})$.
- Where:
 \[\Delta \hat{w} = -R \nabla E(\hat{w}) \]

Batch Learning
- Initialize each w_i to a small random value.
- Repeat until termination:
 \[\Delta w_i = 0 \]
- For each training example d do:
 \[o_d = \sigma(\sum_i w_i x_{i,d}) \]
 \[\Delta w_i \leftarrow \Delta w_i + \eta (y_d - o_d) o_d (1-o_d) x_{i,d} \]
 \[w_i \leftarrow w_i + \Delta w_i \]

Increasing Expressiveness: Multi-Layer Neural Networks

Boolean XOR

<table>
<thead>
<tr>
<th>Input 1</th>
<th>Input 2</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

2-layer Neural Net

Multi-Layer Neural Network
- Multi-layer networks can represent arbitrary functions, but building effective learning methods for such networks was thought to be difficult.
- Networks are composed of an input layer, hidden layer(s), and output layer. Activation is feed-forward from input to output.

Basic Unit in Multi-Layer Neural Network
- **Linear Unit**: $o_j = \hat{w} \cdot \hat{x}$ multiple layers of linear functions produce linear functions. We want to represent nonlinear functions.
- **Threshold units**: $o_j = \text{sgn}(\hat{w} \cdot \hat{x} - T)$ are not differentiable, hence unsuitable for gradient descent.
- Use a non-linear, differentiable output function such as the sigmoid (or logistic) function:
 \[o_j = \frac{1}{1 + e^{-(w \cdot x - T)}} \]
Model Neuron (Logistic)

- Use a non-linear, differentiable output function such as the sigmoid or logistic function.

\[y_j = \frac{1}{1 + e^{-(\text{net}_j - T_j)}} \]

- Net input to a unit is defined as: \(\text{net}_j = \sum w_k x_i \)

- Output of a unit is defined as: \(O_j = \frac{1}{1 + e^{-(\text{net}_j - T_j)}} \)