 Let \(x \) have an exponential density
 \[
 p(x | \theta) = \begin{cases}
 \theta e^{-\theta x} & x \geq 0 \\
 0 & \text{otherwise}
 \end{cases}
 \]
 a. Plot \(p(x | \theta) \) versus \(x \) for \(\theta = 1 \)
 b. Plot \(p(x | \theta) \) versus \(\theta \) over \((0 \leq \theta \leq 5) \) for \(x = 2 \).
 c. Suppose that \(n \) samples \(x_1, \ldots, x_n \) are drawn independently according to \(p(x | \theta) \)
 Show that the Maximum-likelihood estimate for \(\theta \) is given by:
 \[
 \hat{\theta} = \frac{1}{n} \sum_{k=1}^{n} x_k
 \]

2. Duda, Hart, Stork 3.35.
 Let the sample mean \(\mu_n \) and the sample covariance matrix \(C_n \) for a set of \(n \) samples
 \(x_1 \ldots x_n \) (each of which is \(d \)-dimensional) be defined by
 \[
 \mu_n = \frac{1}{n} \sum_{i=1}^{n} x_i

 C_n = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu_n)(x_i - \mu_n)^t
 \]
 We call these the “nonrecursive” formulae.
 (a) What is the computational complexity of calculating \(\mu_n \) and \(C_n \) by these formulae?
 (b) An alternative recursive technique is based on successive addition of new
 samples \(x_{n+1} \) according to the following formulae.
 \[
 \mu_{n+1} = \mu_n + \frac{1}{n+1}(x_{n+1} - \mu_n)

 C_{n+1} = \frac{n}{n+1} C_n + \frac{1}{n+1} (x_{n+1} - \mu_n)(x_{n+1} - \mu_n)^t
 \]
 Show that the mean computed using the recursive method is the same as the nonrecursive method. (The Covariance can be similarly shown, but it’s more tedious).
(c) What is the computational complexity of finding μ_n and C_n by these recursive methods?
(d) Describe situations where you might prefer to use the recursive method for computing μ_n and C_n, and ones where you might prefer the nonrecursive method?

3. Consider a normal $p(x) = N(\mu, \sigma^2)$ and Parzen window function $\varphi(x) = N(\mu, 1)$. Show that the Parzen window estimate

$$p_n(x) = \frac{1}{nh_n} \sum_{i=1}^{n} \varphi \left(\frac{x - x_i}{h_n} \right)$$

has the following property

$$E[p_n(x)] = N(\mu, \sigma^2 + h_n^2)$$

4. Consider the following set of two-dimensional vectors from three categories:

<table>
<thead>
<tr>
<th></th>
<th>Ω_1</th>
<th>Ω_2</th>
<th>Ω_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>X_2</td>
<td>X_1</td>
<td>X_2</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>0</td>
<td>-10</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>-2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>10</td>
<td>-4</td>
</tr>
</tbody>
</table>

(a) Plot the decision boundary resulting from the nearest neighbor rule just for categorizing ω_1 and ω_2. Find the sample mean m_1 and m_2 and on the same figure sketch the decision boundary corresponding to classifying x by assigning it to the category of the nearest sample mean.
(b) Repeat part (a) for categorizing only ω_1 and ω_3.
(c) Repeat part (a) for categorizing only ω_2 and ω_3.
(d) Repeat part (a) for three-category classifier, classifying ω_1, ω_2 and ω_3.