LAB#2

(Due Date & Time: See course web page)

Instructor: Dr. Choon Kim

Objective

- Based on the experience gained from LAB#1, learn how to design, simulate, synthesize, program on FPGA and test combinational & sequential digital components using Altera Quartus II CAD SW and DE1 FPGA board.
- Learn and become familiar with digital logic design using Verilog Hardware Description Language
Instructions

1. Your LAB#2 project name should be L2Cyyy, where yyy=your CID (e.g., L2C079 if your CID=079). The LAB2 golden solution .pof and .sof files are provided. Student should play with golden solution as a reference whenever he/she has a question during design.

2. Use Verilog HDL design. Use the following Verilog top-level module interface code for your design. **No part of this code is allowed to be modified.** The top-level module name must be same as your LAB project name.

   ```verilog
   module L2Cyyy  // where yyy=your CID. e.g., L2C079 if your CID=079
   input  [9:0] sw,  // ten up-down switches, SW9 - SW0
   input  [3:0] key,  // four pushbutton switches, KEY3 - KEY0
   input   clock,  // 24MHz clock source on Altera DE1 board
   output [9:0] ledr,  // ten Red LEDs, LEDR9 - LEDR0
   output [7:0] ledg,  // eight Green LEDs, LEDG8 - LEDG0
   output   reg [6:0] hex3, hex2, hex1, hex0  // four 7-segment, HEX3 - HEX0
   );
   ```

3. Our acceptable timing margin for real-time clock operation is -30 and +30%.
 For example, for 1-second period required in Part4&5 of this LAB, a time period between 0.7 sec (= -30%) and 1.3 sec (= +30%) is acceptable as a 1-second period. A time period beyond this range is unacceptable as 1-second period.

Similar to LAB#1, LAB#2 has a following structure (See each Part for details).
4. LAB#2 Project Operations (**Following operations are prerequisite conditions**)

4.1 Initial state
When power is turned on, your DE1 board must be in the following initial state:

- all SWs are in DOWN position
- all keys are NOT PRESSED
- all leds(ledg and ledr) are OFF
- No Part(#1-5) of this LAB is selected(=enabled)

4.2 Part selection
The sw[9:5] is a Part selector. You select(=enable) a particular Part by setting the sw[9:5] as follows.

NO more than one Part is allowed to be selected at a time(i.e., NO more than one switch is in UP position at the same time)

```
IF sw[9:5]=00000    // all sw are in DOWN position
    Initial state  (No Part is selected)

ELSE IF sw[9:5]=10000  // only sw[9] is in UP position
    Only Part1 is selected

ELSE IF sw[9:5]=01000  // only sw[8] is in UP position
    Only Part2 is selected

ELSE IF sw[9:5]=00100  // only sw[7] is in UP position
    Only Part3 is selected

    Only Part4 is selected

    Only Part5 is selected
```

// When more than one switch in sw[9:5] are up, the output will be unstable or unpredictable, and your design doesn't need to follow the Golden solution. This case will NOT be tested during Demo.

Warning: Above operations are prerequisite conditions. You will get zero(0) point for LAB#2 if you fail them.
PART 1 *(Basic)* **Decimal and Hex Number Display design**

Design a *Decimal* and *Hex* Number Display circuit as follows.

Inputs: SW[3:0] // four-bit binary number input

Output: HEX[3:0] // displays Decimal and Hex numbers

Operation

If *Part1* is selected // see Sec. 4. LAB#2 Project Operations

- HEX[3:2] => displays a *Decimal* number of SW[3:0].
- HEX[0] => displays a *Hex* number of SW[3:0].

*************** The End of Part1 ***********************

Hints -------------------------------------

For example,

<table>
<thead>
<tr>
<th>SW[3:0]</th>
<th>HEX[3:2]</th>
<th>HEX[0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>01</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>02</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>03</td>
<td>3</td>
</tr>
<tr>
<td>......</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>A</td>
</tr>
</tbody>
</table>
| 1011 | 11 | b | // --- use lower case!
| 1100 | 12 | C |
| 1101 | 13 | d | // --- use lower case!
| 1110 | 14 | E |
| 1111 | 15 | F |
PART 2 (Basic) Adder/Multiplier design

Design an Adder/Multiplier circuit as follows.

Inputs:
- **SW[4:3]** = operand1 in binary
- **SW[2:1]** = operand2 in binary
- **SW[0]** is an operation selector: 0 for **Addition**, 1 for **Multiplication**

Output:
- **HEX[3]** = Decimal value of operand1
- **HEX[2]** = Decimal value of operand2
- **HEX[1]** = OFF (i.e., no light)
- **HEX[0]** = Decimal value of Result

Operation:
- If **Part2** is selected // see Sec. 4. LAB#2 Project Operations

 HEX[3:0] displays values defined above Adder/Multiplier circuit

The End of Part2

Hints

For example,

<table>
<thead>
<tr>
<th>SW[4:0]</th>
<th>HEX[3:0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000</td>
<td>00 0</td>
</tr>
<tr>
<td>00010</td>
<td>01 1</td>
</tr>
<tr>
<td>01010</td>
<td>11 2</td>
</tr>
<tr>
<td>10100</td>
<td>22 4</td>
</tr>
<tr>
<td>11100</td>
<td>32 5</td>
</tr>
<tr>
<td>11110</td>
<td>33 6</td>
</tr>
<tr>
<td>....</td>
<td></td>
</tr>
<tr>
<td>00001</td>
<td>00 0 // multiplication...</td>
</tr>
<tr>
<td>00011</td>
<td>01 0</td>
</tr>
<tr>
<td>01011</td>
<td>11 1</td>
</tr>
<tr>
<td>10101</td>
<td>22 4</td>
</tr>
<tr>
<td>11101</td>
<td>32 6</td>
</tr>
<tr>
<td>11111</td>
<td>33 9</td>
</tr>
<tr>
<td>....</td>
<td></td>
</tr>
</tbody>
</table>
PART 3 (Intermediate) Modulo-16 Up/Down Counter design

Design a Modulo-16 Up/Down Counter circuit as follows.

Inputs:
- KEY[2] for input. An input is entered to counter each time the key is pressed down
 (Note that NO input is entered when the key is released).
- SW[0] for reset operation (0 for normal counting, 1 for clearing the counter output to zero)
- SW[1] for selecting direction of counting (0 for Up , 1 for Down counting)
 (SW[1] changes the direction of counting at any moment during operation.)

Output:
 All other HEXs = OFF(no light),

Operation:
- If Part3 is selected // see Sec. 4. LAB#2 Project Operations

1) The initial value of HEX[2] must be 0 when sw[7] goes up(i.e., when Part3 is selected)
2) Your circuit counts the number of pressing on KEY[2] and displays the result on HEX[2].
 Therefore HEX[2] increases or decreases each time KEY[2] is pressed depending on SW[1].
3) SW[1] changes the direction of counting at any moment during operation.
4) Your counter output should work as Modulo-16 operation.
5) SW[0] is a reset switch. If SW[0]=0, the counter operates normally. If SW[0]=1 then the counter output HEX[2] is cleared to 0 and the counting function is not performed.

************** The End of Part3 **************

------------------------------------- Hints -------------------------------------

For example,
Case1) When sw[1]=0, 0 => 1 => 2 => 3 => ... => d => E => F => 0 => 1 => 2 => 3 =>...
Case2) When sw[1]=1 , 0 => F => E => d => ... => 3 => 2 => 1 => 0 => F => E => d => ...
Case3) A new counting starts with sw[1]=0 , HEX[2] starts from 0(by reset), 0 => 1 => 2 => 3 => ...
 => d => E => F => 0 => 1 => 2 => 3 here, sw[1]=1 3 => 2 => 1 => 0 => F => E => d => ...
 => 3 => 2 => 1 => 0 => F => E => d here, sw[1]=0 d => E => F => 0 => 1 => 2 => 3 =>....
PART 4 (Intermediate) Real-Time Measurement Circuit design

Design a Real-Time Measurement Circuit as follows.

Inputs:
SW[0] for reset

Output:
HEX[3:0] for output (in Modulo-3 operation, i.e., 0000 -> 2222 -> 0000 -> ...)
LEDG[0] for blinking signal

Operation

If Part4 is selected // see Sec. 4. LAB#2 Project Operations

1. HEX[3:0] starts displaying the number of seconds passed since the moment when SW[6] goes up (i.e., when Part4 selected). Each HEX digit displays the counter output in Modulo-3 operation.

2. The LEDG[0] starts blinking every second with 50% duty cycle as follows.

 LEDG[0]

 OFF ON OFF ON OFF ON OFF

 1 second 1 second

3. SW[0] is a reset switch. If SW[0]=0, the timer operates normally. If SW[0]=1 then HEX[3:0] is cleared to 0000, LEDG[0]= OFF (no light), and the time measurement function is not performed.

****************** The End of Part4 ******************

Hints -------------------------------------

1) DE1 User manual sec. 4.4. for clock operation may be helpful
2) For example,

 HEX[3:0] = 0000 // <---- when SW[8] goes up here! (i.e., Part4 selected)
 HEX[3:0] = 0001 // after one second passed
 HEX[3:0] = 0002 // after another second passed (i.e., two seconds passed)
 HEX[3:0] = 0010 // after another second passed (i.e., three seconds passed),
 HEX[3:0] = 0011
 HEX[3:0] = 0012
 HEX[3:0] = 0020
 HEX[3:0] = 0021

 HEX[3:0] = 2222
 HEX[3:0] = 0000 // <---- back to 0000, Modulo-3 operation!
Bouncing Ball with Moving Message Display design

Design a Bouncing ball with Moving message circuit as follows.

Inputs:
SW[0] for **pausing** (not reset!) the operation: 0 for resume operation, 1 for **pausing**

Output:
LEDR[9:0] for bouncing ball
HEX[3:0] for moving message

Operation

If Part5 is selected // see Sec. 4. LAB#2 Project Operations

1. [Bouncing Ball on LEDR[9:0]]
 Starting from LEDR[0] position, a red light ball moves from LEDR[0] to LEDR[9] with a duration of 0.5 second. When arrived at LEDR[9], the ball moves from LEDR[9] back to LEDR[0] with same duration of 0.5 second. Therefore the time period of one round trip is one(1) second. When returned to LEDR[0], the red light ball keeps repeating the same movement.

2. [Moving Message on HEX[3:0]]
 A message, " HELLO Clid <yourCID> ", is moving from right to left repeatedly. For example, the message in golden solution is " HELLO Clid 353 ".
The message movement is synchronized to the bouncing ball. The message moves one letter whenever the bouncing ball hits the LEDR[9](=left edge).

3. SW[0] is a **pause** switch(it's not a reset switch!).
 SW[0] = 1 pauses the operation.
 SW[0] = 0 resumes the operation.

----------------------- The End of Part5 -----------------------