CSE 101 Final Exam

Time: 3 Hours

Some problems have multiple parts; do all parts. EXPLAIN ALL ANSWERS, with at least a few lines or sentences of precise English.

Order Notation

For each of the following answer “True” or “False” and give a brief explanation (1 or 2 lines or sentences.) Each is worth 4 points, 2 points for the correct answer and 2 points for the explanation or proof.

1. 1000n + 12,500 ∈ O(n log n) True, 1000n + 12,500 < 13,500n < 13500n log n. so

2. n^2 + (n - 1)^2 + (n - 2)^2 + ...1^2 ∈ O(n^2). False. n/2 of the terms are larger than n^2/4, so the sum is Ω(n^3), not upper bounded by O(n^2).

3. 2^{3n} ∈ O(2^n). False. 2^{3n}/2^n = 2^{2n}, which goes to infinity with large n. Thus, we can’t have 2^{3n} < C2^n for any constant C.

4. If n ≥ 16, an O(n log n) time algorithm is always at least four times faster than an O(n^2) time algorithm. False. Since O notation hides multiplicative constants, you cannot reach an exact numerical conclusion for specific values of n. Also, O is an upper bound, so that O(n^2) algorithm could also be O(n). (Either of these answers is enough).

5. If f and g are any positive, non-decreasing functions, then (f(n) + g(n))^2 ∈ Θ((f(n))^2 + (g(n))^2) (Prove or give counter-example.) True. (f(n) + g(n))^2 = f(n)^2 + 2f(n)g(n) + g(n)^2 ≥ f(n)^2 + g(n)^2 since f and g are non-negative. On the other hand, 2f(n)g(n) < 2max((f(n), g(n))^2 < 2f(n)^2 + 2g(n)^2 since the max squared will be one of those two terms. So all terms are upper bounded by O(f(n)^2 + g(n)^2) .

Divide and Conquer

The maximum weight sub-tree problem is as follows. You are given a balanced binary tree T of size n, where each node i ∈ T has a (not necessarily positive) weight w(i) for each node i ∈ T. (Every node in T has pointers to its left-child, right-child, and parent, and you are given a pointer to the root of the tree. A NIL field for the children means the node is a leaf, and for the parent, means the node is the root. You are given a pointer to the root r of T.) A rooted sub-tree of T is a connected sub-graph of T containing the root r. (So a sub-tree is not necessarily the entire sub-tree rooted at a node. However, it cannot contain the children of a node without containing the node.) You wish to find the maximum possible value of the sum of weights of nodes in a rooted sub-tree S of T, ∑i∈S w(i).
Here is a recursive algorithm that solves this problem, given a pointer to the root of T:

$\text{MaxWtSubtree}[r]$

1. IF $r = \text{NIL}$ return 0.
2. $A \leftarrow \max(O, \text{MaxWtSubtree}[r\text{.leftchild}])$
3. $B \leftarrow \max(O, \text{MaxWtSubtree}[r\text{.rightchild}])$

a. Give a recurrence and a time analysis for this algorithm in the case when T is a complete binary tree of height h and size $n = 2^h - 1$ (10 pts.)

We call ourselves recursively on the left and right subtree, and then have constant work. If both sub-trees are of size at most $n/2$, as in the balanced case, $T(n) \leq 2T(n/2) + O(1)$. Since $2 > 2^0$, this is in the bottom-heavy case of the Master Theorem, so the total time is $O(n^{\log_2 2}) = O(n)$.

b. Prove that the same worst-case bound holds if T is any tree of size n. (10 pts.)

More generally, if the left subtree has size L and the right sub-tree has size R, $n = L + R + 1$, and $T(n) \leq T(L) + T(R) + O(1)$. We can prove by strong induction that $T(n)$ is linear-time. Let c be greater than the hidden constant in the $O(1)$ above, and greater than the time the algorithm takes on inputs of size 1. By definition, if the tree has size $n = 1$, the algorithm takes time less than $Cn = C$. Assume the algorithm takes time at most Cn' for $1 \leq n' \leq n$. Then on an input of size n, it takes time $T(L) + T(R) + c'$ for $c' < c$ the hidden constant. By the inductive hypothesis, $T(L) \leq cL$ and $T(R) \leq cR$, to the total time is at most $T(n) \leq T(L) + T(R) + c' \leq cL + cR + c \leq cn$.

Alternatively, observe that we call the algorithm recursively throughout at most once per node of the tree, and each time, the non-recursive part is constant time.

Monotone matchings All the remaining questions concern variations of the following problem.

Let G be a bipartite graph, with $L = \{u_1, \ldots, u_l\}$ the set of nodes on the left, $R = \{v_1, \ldots, v_r\}$ the set of nodes on the right, E the set of edges, each with one endpoint in L and the other in R, and $m = |E|$ the number of edges.

A matching in G is a set of edges $M \subseteq E$ so that no two edges in M share an endpoint (neither the one in L nor the one in R). A matching M is monotone if for every two edges (u_{i_1}, v_{j_1}) and (u_{i_2}, v_{j_2}) in M, if $i_1 < i_2$ then j_1 < j_2.
then $j_1 < j_2$. That is, one could draw all the edges in the matching without crossing, if the nodes are put in order on the two sides.

The problem is, given a bipartite graph G, find the largest monotone matching in G.

Assume $l \leq r$. Then a monotone matching M is perfect if it has size l, i.e., $|M| = l$.

Greedy Algorithms and data structures Part 1 : 10 points Below is a greedy strategy for the largest monotone matching problem. Give a counter-example where it fails to produce the optimal solution. (Hint: Since below you will show that the algorithm works when the maximum monotone matching is perfect, your example shouldn’t have a perfect monotone matching.)

Candidate Strategy A : For each $i = 1$ to l, if u_i has at least one undeleted neighbor v_j, match it to the unmatched neighbor with smallest value of j. Then delete u_i and v_1, \ldots, v_j, and repeat.

Say that G has three nodes u_1, u_2, u_3 on the right and three nodes v_1, v_2, v_3 on the left. If u_1 is connected to v_3 only, u_2 to v_1 and u_3 to v_2, then the best monotone matching is to use the last two edges. But the greedy algorithm above picks the first edge, leaving it no additional edges to choose from.

Part 2: 5 pts Illustrate the above strategy on the following graph with a perfect matching: $L = \{u_1, u_2, u_3\}$, $R = \{v_1, v_2, v_3, v_4, v_5\}$, and $E = \{(u_1, v_2), (u_1, v_3), (u_1, v_4), (u_2, v_1), (u_2, v_2), (u_2, v_3), (u_2, v_5), (u_3, v_1), (u_3, v_5)\}$

Skipped

Part 3: 10 points Prove that, if G has a perfect matching, then Candidate Strategy A finds one.

(Hint: Use one of the following two methods. Let strategy A match u_i with v_j (unless it can’t be matched). Let OPT be a perfect matching that matches each u_i with v_k. (Note: all left nodes will be matched by OPT, since it is perfect.)

Transformation method: Prove by induction on T that there is a left-perfect matching OPT_T that matches each u_i with v_j, for $1 \leq i \leq T$. We show by induction, that, if there is a perfect monotone matching, then there is one that matches the first i nodes on the left as does the greedy algorithm. In the base case, $i = 0$, there is nothing to prove.

Assume Opt_T is a perfect monotone matching that matches the first i nodes as does the greedy algorithm. Say that Opt_T matches u_i to some v_j (as does the greedy algorithm) and matches u_{i+1} to some v_k. We must have $k > j$ for OPT_T to be monotone. So at the start of the $i + 1$st iteration of the greedy algorithm, v_k has not been deleted.
The greedy algorithm will then match $i+1$ to the first neighbor that has not been deleted, if any. Since v_k is some neighbor that hasn’t been deleted, it will either match $i+1$ to v_k or some $v_{k'}$ with $k' < k$. In the first case, we can let $OPT_{i+1} = OPT_i$. In the second, we can replace the edge from u_{i+1} to v_k in OPT_i with the edge from u_{i+1} to $v_{k'}$ to construct OPT_{i+1}. In either case, OPT_{i+1} is a perfect monotone matching, because the match for u_{i+1} is greater than j and hence after any node used for nodes before u_{i+1} and less than k and hence before any node used for nodes after u_{i+1}.

By induction, we have shown the claim for any i. In particular, for $i = n$, there is a perfect monotone matching that matches every node the same as the greedy algorithm does, so the greedy algorithm is a perfect monotone matching.

Part 4: 10 points Describe an efficient algorithm that carries out the strategy. Your description should specify which data structures you use, and any pre-processing steps. Assume the graph is given in adjacency list format. Give a time analysis, in terms of l, r and m.

Assume the graph is in adjacency list format. We just keep track of the index k of the last node v_k that has been matched. For each i, we run through the list of neighbors, and find the smallest $k' > k$ so that $v_{k'} \in N(u_i)$. This takes time proportional to the degree of u_i. If no such k' exists, we leave u_i unmatched. Otherwise, we match it to $v_{k'}$ and set k to k'.

Since the time for each node on the left is $O(1 + deg(u_i))$, the total time will be $O(|L| + |E|)$.

Back-tracking and Dynamic Programming The following recursive algorithm for the maximal monotone matching problem finds the maximum matching whether or not it is perfect. It branches on whether a node on the left is matched or unmatched. By the analysis of greedy algorithm A above, we can see that when a node is matched, it should always be matched to its smallest neighbor. The backtracking algorithm just returns the size of the maximum monotone matching, not the actual matching.

BTMMM($G = (L = \{u_1, \ldots, u_l\}, R = \{v_1, \ldots, v_r\}, E)$: bipartite graph)

1. IF $|L| = 0$ return 0.
2. Unmatched ← BTMMM($G - \{u_1\}$).
3. IF $|N(u_1)| = 0$ return Unmatched
4. Let J be the first neighbor of u_1, i.e., the smallest value so that $v_J \in N(u_1)$
5. Matched ← $1 + BTMMM(G - \{u_1, v_1, \ldots, v_J\})$
6. Return $\texttt{Max}(\text{Matched}, \text{Unmatched})$
Part 1: 5 points Illustrate the above algorithm on your counter-example graph for the greedy strategy, (as a tree of recursive calls and answers.}

Skipped

Part 2: 5 points Give an upper bound on the number of recursive calls the above algorithm makes, in the worst-case. (Be sure to expain your answer.)

There are two ways to give this bound. We make two recursive calls at each step. In terms of the number of nodes \(n = l + r \), one call is of size \(n - 1 \), and the other of size at most \(n - 2 \). This gives us an upper bound of \(O(Fib_n) \), the \(n \)'th Fibonacci number.

On the other hand, both recursive calls reduce \(|L| \) by 1. Thus, the depth of the binary tree is at most \(|L| \) which gives an upper bound of \(O(2^{|L|}) \).

Both bounds are correct, and neither is always better than the other. We could combine them by saying the upper bound is the minimum of the two.

Part 3: 10 points Give a dynamic programming version of the recurrence.

At any point in the recursion, the remaining nodes on the left are \(u_I...u_l \) and the remaining nodes on the right are of the form \(v_K...v_r \). So we create a matrix \(MM[I,K] \) to store the answers for each \(1 \leq I \leq l + 1 \) and each \(1 \leq K \leq r + 1 \), \(I \) is increasing as we make calls, so we need to fill in this matrix in decreasing order of \(I \). The base cases are when \(I = l + 1 \), i.e., the left side is empty.

\[DPMMM(G = (L = \{u_1,...u_l\}, R = \{v_1,...v_r\}, E): \text{bipartite graph}) \]

1. Initialize \(MM[1...l + 1,1...r + 1] \).
2. FOR \(K = 1 \) to \(r + 1 \) do: \(MM[l + 1,K] \leftarrow 0. \)
3. FOR \(I = l \) downto 1 do: FOR \(K = 1 \) to \(r + 1 \) do:
 4. \(Unmatched \leftarrow MM[I + 1,K] \).
 5. IF \(u_I \) has no neighbor \(u_H \) with \(H \geq K \) THEN \(MM[I,K] \leftarrow Unmatched \)
 6. ELSE let \(J \) be the smallest such \(H \)
 7. let \(Matched \leftarrow 1 + MM[I,J] \).
 8. \(MM[I,K] \leftarrow \max(Matched, Unmatched) \)
9. Return \(MM[1,1] \).

Part 4: 5 points Give a time analysis of this dynamic programming algorithm.

In the most naïve version of the algorithm above, for each node \(u_I \), we search through all of its neighbors \(r + 1 \) times. So the cost is \(\sum_I O((\text{deg}(u_I)(r + 1))) = O(r|E|) \).
But if we sort the neighbors of I before doing the loop for all J, and just keep a counter for where we left off in the search for a neighbor \(H > K \), we can update this counter in constant time when we increment \(K \). (It is either the same, or the next on the sorted list). Then the total time is \(\sum_i (O(\deg(v_i) \log \deg(v_i) + r)) \leq \sum_i O(\deg(v_i) \log r + r)) = O(|E| \log r + rl). \)

Part 5: 5 points Show the array or matrix that your dynamic programming algorithm produces on the example graph from Part 2 of the greedy algorithm.

Skipped.