Correctness Proof: 20 points

Prove the following loop invariant for the algorithm on the previous page:

Here is an algorithm that, given a graph with vertices

Analyzing loops-20pts

Order questions- 10 points each For each, answer True or False, and give a short explanation for your answer.

1. \(n^2 \in O(n^5) \).
 Yes. \(n^2 \leq n^5 \) for \(n \geq 1 \), so the claim follows using \(c = 1 \) in the definition of \(O \).

2. \(n^2 \in \Theta(n^5) \).
 False. If \(n^2 \) were \(\Theta(n^5) \), we would have \(n^2 \geq cn^5 \) for some \(c > 0 \) and sufficiently large \(n \). But then \(c \leq 1/n^3 \), which goes to 0, a contradiction.

3. \(2^{\log n} \in O(2^{\log n}) \).
 False. \(2^{\log n} = 2\log n^2 = n^2 \), whereas \(2^{\log n} = n \). As above \(n^2 \) is not in \(O(n) \).

4. If \(f \), \(g \) and \(h \) are functions from positive integers to positive integers, and \(f(n) \in O(g(n)) \), then \(f(n) + h(n) \in O(g(n) + h(n)) \).
 True. We know \(f(n) \leq cg(n) \) for some \(c > 0 \) and sufficiently large \(n \). Then for sufficiently large \(n \), \(f(n) + h(n) \leq cg(n) + h(n) \leq c'(g(n) + h(n)) \) where \(c' = \max(c, 1) \). Thus, by definition of \(O \) \(f(n) + h(n) \in O(g(n) + h(n)) \).

Analyzing loops-20pts Here is an algorithm that, given a graph with vertices \(V = \{1...n\} \) in adjacency list format, computes the in-degree \(D(u) \) for each node \(u \in V \), the number of edges of the form \((v, u)\). As usual, \(N(u) \) represents the list of out-neighbors of the node \(u \).

\[
\text{InDegrees(G)}
\]

1. Initialize an array \(D \) by \(D[u] \leftarrow 0 \) for each \(u \in V \).
2. FOR each \(v \in V \) do:
3. FOR each \(u \in N(v) \) do: \(D[u] ++ \).
4. Return \(D \)

Give a time analysis, up to order, for this algorithm, in terms of the number of nodes and edges, \(n = |V| \) and \(m = |E| \). Be sure to explain your answer.

Let \(d(v) = |N(v)| \) be the outdegree of \(v \). For each \(v \), when we run through the outside FOR loop with \(v \), we take \(O(d(v)) \) time in the inside FOR loop. Thus, the total time for all executions of the inside FOR loop is \(\sum_v d(v) = |E| = m \), the number of edges. Then the time to initialize the array is \(O(n) \), since we initialize one array position for each \(v \). Thus, the total time is \(O(n + m) \).

Correctness Proof: 20 points Prove the following loop invariant for the algorithm on the previous page:

Then after the iteration with \(v = i \), each \(D[u] \) is the number of in-neighbors of \(u \) occurring earlier, i.e., the number of \(1 \leq j \leq i \) with \((j, u) \in E \).

We’ll prove that \(D[u] \) is the number of in-neighbors of \(u \) \(j \) with \(j \leq i \) after \(i \) iterations. The base case is \(i = 0 \), i.e., before the loop starts. \(D[u] = 0 \) initially, and there are no vertices \(j \leq 0 \), so \(D[u] = 0 \) is the number of such \(j \).

Assume that after \(i \) iterations , \(D[u] \) is the number of in-neighbors \(j \) of \(u \) with \(j \leq i \). Then if \(i + 1 \) is an in-neighbor of \(u \), the number of neighbors with \(j \leq i + 1 \) is the number of neighbors \(j \leq i \) plus one (for \(j = i + 1 \). In this case \(D[u] \) is incremented, so it is equal to one plus its previous value which is one plus the number of neighbors \(j \leq i \) which is the number of in-neighbors \(j \leq i + 1 \).

If \(i + 1 \) is not an in-neighbor of \(u \), the number of in-neighbors \(j \leq i + 1 \) is equal to the number with \(j \leq i \), and \(D[u] \) is unchanged. So by the induction assumption, it is still equal to the number of in-neighbors \(j \leq i \), which equals the number with \(j \leq i + 1 \). So in either case, the conclusion still holds after \(i + 1 \) iterations.

By induction, it thus holds after any number \(i \) iterations.