Binary Conversion The following recursive algorithm uses the divide and conquer method to convert an \(n \) bit binary integer \(x_{n-1}...x_0 \) into decimal. It uses the \(O(n^{\log_2 3}) \) time divide-and-conquer multiplication algorithm \textit{Multiply2} from class and the text; and the grade school linear time \((O(n))\) \textit{Add} algorithm as sub-routines. We assume Add and Multiply are defined to take decimal integers as input and output. Note that \(2^n \), in binary, is a 1 followed by \(n \) 0’s, so is easy to construct as a binary integer in linear time. Let \textit{ConstructPower2}, given \(n \), construct \(2^n \) in binary in time \(O(n) \).

\begin{align*}
\text{ConvertToDecimal}(x_{n-1}...x_0): \text{Binary integer represented as an array of bits); decimal integer;}
\end{align*}

1. IF \(n = 1 \) return \(x_0 \).
2. \(y \leftarrow x_{n-1}...x_{n/2} \)
3. \(z \leftarrow x_{n/2-1}...x_0 \)
4. \(w \leftarrow \text{ConstructPower2}(n/2 - 1) \) (in binary)
5. \(a \leftarrow \text{ConvertToDecimal}(y) \)
6. \(b \leftarrow \text{ConvertToDecimal}(z) \)
7. \(c \leftarrow \text{ConvertToDecimal}(w) \)
8. \(e \leftarrow \text{Add}(c, c) \)
9. \(d \leftarrow \text{Multiply2}(a, c) \)
10. \(e \leftarrow \text{Add}(d, b) \)
11. Return \(e \)

First, give a proof that this algorithm is correct, by strong induction (5 points). Second, give a recurrence for the time this algorithm takes (5 points). Third, solve the recurrence to give a time analysis for this algorithm (10 points). Finally, think of a modification to this algorithm that would improve its running time (5 points, somewhat tricky).

Binary Tree Isorphism—25 points Consider the following recursive algorithm, which makes the following assumptions. \(x, y \) are the roots of two binary trees, \(T_x \) and \(T_y \). \textit{Left}(\(z \)) is a pointer to the left child of node \(z \) in either tree, and \textit{Right}(\(z \)) points to the right child. If the node doesn’t have a left or right child, the pointer returns “NIL”. Each node \(z \) also has a field \textit{Size}(\(z \)) which returns the number of nodes in the sub-tree rooted at \(z \).
\(\text{Size}(\text{NIL}) \) is defined to be 0. The algorithm \(\text{SameTree}(x, y) \) returns a boolean answer that says whether or not the trees rooted at \(x \) and \(y \) are the same if you ignore the difference between left and right pointers.

1. Program: \(\text{SameTree}(x, y: \text{Nodes}): \text{Boolean}; \)
2. \(\text{IF} \ \text{Size}(x) \neq \text{Size}(y) \ \text{THEN return} \ False; \text{halt}. \)
3. \(\text{IF} \ x = \text{NIL} \ \text{THEN return} \ True; \text{halt}. \)
4. \(\text{IF} \ (\text{SameTree}(\text{Left}(x), \text{Left}(y)) \ \text{AND} \ \text{SameTree}(\text{Right}(x), \text{Right}(y))) \)
\(\text{OR} \ (\text{SameTree}(\text{Right}(x), \text{Left}(y)) \ \text{AND} \ \text{SameTree}(\text{Left}(x), \text{Right}(y))) \)
\(\text{THEN return} \ True; \text{halt}. \)
5. \(\text{Return} \ False; \text{halt}. \)

Give a time analysis (up to order) for this program for the case when the trees rooted at \(x \) and \(y \) are both complete balanced trees with \(n \) nodes. (Every node \(z \) in a complete balanced tree has \(\text{Size}(\text{Left}(z)) = \text{Size}(\text{Right}(z)). \)) Then give a time analysis for the case of arbitrary trees of size \(n \).

Bimodular array maximum Say that an array of integers \(A[1...n] \) is bimodular if there is some \(1 \leq I \leq n \) so that the array is increasing up to \(I \), and decreasing thereafter, i.e., \(A[1] < A[2] < A[I] > A[I+1] > .. > A[n] \). Give an efficient algorithm that given a bimodular array finds the maximum element (which will be the \(A[I] \) in the definition). Your algorithm should take substantially less than linear time, not even looking at most of the array. (10 points correctness, 15 points efficiency and time analysis.)

Implementation: 25 pts Often, divide-and-conquer algorithms only become superior to asymptotically slower algorithms for large inputs, and are slower for smaller. A simple technique for improving their performance on small inputs is to use a threshold. Put in a larger base case in the recurrence, using a simpler but asymptotically slower algorithm when we fall below this threshold. In other words, for some threshold \(T \), we would use the recurrence if \(n > T \) and use a simpler algorithm if \(n \leq T \). Implement the \(O(n\log^2 n) \) time divide-and-conquer multiplication algorithm from class, and the grade-school multiplication algorithm. Then consider a hybrid algorithm using the technique above, where you replace the base-case of the recursion with the grade-school method for inputs of size less than some threshold \(T \). For the different thresholds \(T \), plot the average times to multiply random \(n \) bit numbers using the two methods (on log-log scale). Experimentally determine the best value of \(T \). Does this method only improve the running time on small inputs, or on all inputs? Explain.