Say that, on an input of size \(n \geq 1 \), an algorithm calls itself recursively on an input of size \(n-1 \) and otherwise takes \(O(n) \) time in addition. On an input of size 0, it terminates in some fixed time \(T(0) \). Write down a recurrence relation for the total time \(T(n) \) the algorithm takes on inputs of size \(n \), and use that to find \(T(n) \) up to order. (5 points correct recurrence with explanation, 5 points solving recurrence correctly.)

Order Notation, 5 pts. each = 2 points correct answer + 3 points explanation

Is \(2^n \in O(n!) \)? Why or why not?

Is \(2^{[\log n]} \in O(n) \)? Why or why not? (When unspecified, logs are base 2).

Is \(4^n \in O(2^n) \)? Why or why not?

If \(f \) and \(g \) are functions from positive integers to positive integers, is \(f(n) + g(n) \in \Theta(\max(f(n), g(n))) \)?

Analyzing algorithms Here is an algorithm that, given two sorted lists \(A[1..n] \) and \(B[1..n] \), decides whether there is a pair of indices \(i, j \) with \(1 \leq i \leq n \) and \(1 \leq j \leq n \) so that \(A[i] = B[j] \).

Intersect \(A[1..n], B[1..n] \): sorted list of integers

1. \(I \leftarrow 1, J \leftarrow 1, Found \leftarrow False \).
2. While \(I \leq n \) and \(J \leq n \) and \(Found = False \) do:
 3. \hspace{1em} IF \(A[I] = B[J] \) THEN \(Found \leftarrow True \).
 4. \hspace{1em} IF \(A[I] > B[J] \) THEN \(J++ \)
 5. \hspace{1em} IF \(A[I] < B[J] \) THEN \(I++ \)
3. Return \(Found \).

First, prove that this algorithm is correct, i.e., that it returns true if and only if such a pair \(i, j \) exists (15 points). Second, give a time analysis, up to order, for this algorithm. Be sure to explain your answer. (15 points)

Summing triples (20 points) Let \(A[1..n] \) be an array of positive integers.

A summing triple in \(A \) is 3 distinct indices \(1 \leq i, j, k \leq n \) so that \(A[i] + A[j] = A[k] \). Give and analyze an algorithm that, given \(A \), determines whether there is any summing triple in \(A \). Your algorithm must take \(o(n^3) \) time, i.e., some time function that is asymptotically strictly faster than \(O(n^3) \).
Implementation (20 points) Implement the algorithm you gave for the summing triples problem above. For n as many different powers of two as possible, and for many random arrays where each of the n elements $A[i]$ has a random value between 1 and n, try your algorithm and plot the average time your algorithm took on a log-log scale, i.e., plot $\log(n)$ on the x-axis and $\log(Time)$ on the y-axis. Then plot the same information but where each $A[i]$ has a random value between 1 and n^3. Do you see a difference? If so, can you explain it?