Lecture 3: Nearest Neighbor Classification.

Classification: Given labelled data:

\[(X_i, Y_i) \quad i = 1, \ldots, n \]

\[
\downarrow \quad \downarrow
\]

feature labels (discrete)

vectors

Design a rule to predict \(y \) values for unseen \(x \).

New (unseen) \(x \) (Called Test Data)

\[
\downarrow
\]

Prediction Rule.

Label \(y \) (for \(x \))

Performance Measures:

1. Training error:

\[
= \frac{\#\text{mistakes}\text{ of the rule on training set}}{\text{Size of the training set}}
\]

2. Test error:

\[
= \frac{\#\text{mistakes}\text{ of the rule on test dataset}}{\text{Size of test set}}
\]

* Training and test sets should be kept separate.

* Test error is a better measure than training error

* Training and test data should be "similar" in some sense.

* In fact, they are assumed to be drawn from some distribution.
Nearest Neighbor Classifier:

Given labelled examples (training data)
\((x_1, y_1), \ldots, (x_n, y_n)\)

and a test example \(x\).

Prediction Rule:

* Find the training data point \(x_j\) s.t. distance between \(x\) and \(x_j\) is minimum. (If tied, break ties uniformly at random.)

* Output \(y_j\).

Example 1:

Training data:
\[((1, 0), 0), \quad ((1, 1), 0), \quad ((2, -1), 1) \]

Test points:
\[*(1, 1) \quad (0, 0), \quad (2, 1), \quad (1.5, -0.5) \]

\[*\quad (1, 0) \quad * \quad (2,-1) \]

- \(\text{dist} \left((0, 0), (1, 0) \right) = 1\)
- \(\text{dist} \left((0, 0), (1,1) \right) = \sqrt{2}\)
- \(\text{dist} \left((0, 0), (2,-1) \right) = \sqrt{5}\)

so: closest point to \((0, 0) = (1, 0)\), label = 0
- dist \((2, 1), (1, 0)\) = \(\sqrt{2}\)
- dist \((2, 1), (1, 1)\) = 1
- dist \((2, 1), (2, -1)\) = 2.

closest: \((1, 1)\)
output: \(y = 1\)

- dist \((1.5, -0.5), (1, 0)\) = \(\frac{1}{\sqrt{2}}\)
- dist \((1.5, -0.5), (1, 1)\) = \(\frac{\sqrt{5}}{2}\)
- dist \((1.5, -0.5), (2, -1)\) = \(\frac{1}{\sqrt{2}}\)

closest: \((1, 0), (2, -1)\)
Break ties at random
(report \(y = 0\) w.p. \(\frac{1}{2}\)
\(y = 1\) w.p. \(\frac{1}{2}\))

Example 2:

Training data: \((-1, 1), (0, 1), (3, 2), (4, 2), (5, 1)\)
\(x\) is a scalar.

Decision Boundary: Boundary between regions of different classes.

The output changes at the decision boundary.

NOTE: Decision boundary is a general concept,
applications to any classifier, not just NN.
Example 3:
Training data:
(1, 1), (−1, −1), 1),
(1, −1), (−1, 1), 2)

Output label 1

Decision Boundary

Output label 2

||x − (1, 1)|| ≤ \min [||x − (1, −1)||, ||x − (−1, −1)||,
||x − (−1, 1)||]

(Equation represents all vectors x which are closer
to (1, 1) than any other data point.)

Example 4:
Training data:
(0, 0), 1), (4, 0), 2), (1, 3), 3)

Output label 3

Decision boundary

Output label 2
When does NN work well or not?

- works well away from decision boundary
- not so well at the boundary
- also does not work well when data is noisy.

eg:

\[\bullet \bullet \bullet \bullet \bullet \bullet \]

\[^\uparrow \]

Suppose noisy point
NN classifier does badly around this point.

To make it more robust, k-NN classifier.

The k-Nearest Neighbor Classifier:

Given labelled examples (training data)
\[(x_1, y_1), \ldots, (x_n, y_n)\]
and a test example \(x,\)

Prediction Rule:

1. Find \(j_1, \ldots, j_k,\) the indices of the \(k\) points closest to \(x\) in the training data.
2. Output the majority of the labels \(y_{j_1}, y_{j_2}, \ldots, y_{j_k}\).

 \[\text{Majority label is one that occurs most often.} \]

 If there is a tie, resolve uniformly at random.
Example 1: 3-NN

Training data:

- (0, 0), 0
- (1, 1), 0
- (1, -1), 0
- (2, 1), 1
- (2, -1), 0.1

Test points: (1, 0).

dist((1, 0), (0, 0)) = 1
dist((1, 0), (2, 1)) = \sqrt{2}
dist((1, 0), (1, 1)) = 1
dist((1, 0), (2, -1)) = \sqrt{2}
dist((1, 0), (1, -1)) = 1

Closest 3 points: (0, 0), (1, 1), (1, -1)
Their labels: 0, 0, 0

So output = 0.

Test point: (2, 0.5)

dist((2, 0.5), (0, 0)) = \frac{5\sqrt{17}}{2}
dist((2, 0.5), (2, 1)) = \frac{1}{2}
dist((2, 0.5), (1, 1)) = \sqrt{5}
dist((2, 0.5), (2, -1)) = \frac{5}{2}
dist((2, 0.5), (1, -1)) = \frac{\sqrt{13}}{2}

Closest 3 points: (2, 1), (1, 1), (2, -1)
Labels: 1, 0, 1

Majority: 1 = output label.
Example 2:

-6 -5 -4 -3 -2 -1
-6 -5 -4 -3 -2 -1

Suppose the points at -3 and 6.1 and 6.9 are noisy.

1-NN:

\[x = -3.5 \quad | \quad x = 2.5 \]
\[-6 \quad -5 \quad -4 \quad -3 \quad -2 \quad -1 \]

Output label is Black here

3-NN:

\[-6 \quad -5 \quad -4 \quad -3 \quad -2 \quad -1 \]

Output label is Red on this entire region

5-NN

\[-6 \quad -5 \quad -4 \quad -3 \quad -2 \quad -1 \]

Output label Red in this region

5-NN:

\[x = 5.55 \quad | \quad x = 7.45 \]
\[-6 \quad -5 \quad -4 \quad -3 \quad -2 \quad -1 \]

Output label Black in this entire region.
How to Choose k? Through Validation

1. Split data into training set and validation set.
2. Train classifier on training set for $k = 1, 3, 5, \ldots$
3. Evaluate the error of each classifier trained on validation set and pick the one with the lowest error.

Distance Measure: Most common is Euclidean distance. Others used too.

How to find NNs?

- In 1-d, binary search $O(\log n)$
- Higher d, advanced data structures such as Locality Sensitive Hashing.

Advantages + Disadvantages:

- Simple, flexible, easy to implement
- Classification time is high, space requirement high, doesn’t work very well in high dimensions.