DRAM
Dynamic Random Access Memory (DRAM)

• Storage
 • Charge on a capacitor
 • Decays over time (us-scale)
 • This is the “dynamic” part.
 • About $6F^2$: 20x better than SRAM

• Reading
 • Precharge
 • Assert word line
 • Sense output
 • Refresh data

 Only one bit line is read at a time.
The other bit line serves as a reference.
The bit cells attached to Wordline 1 are not shown.
Dynamic Random Access Memory (DRAM)

- **Storage**
 - Charge on a capacitor
 - Decays over time (us-scale)
 - This is the “dynamic” part.
 - About $6F^2$: 20x better than SRAM

- **Reading**
 - Precharge
 - Assert word line
 - Sense output
 - Refresh data

Only one bit line is read at a time. The other bit line serves as a reference. The bit cells attached to Wordline 1 are not shown.
Dynamic Random Access Memory (DRAM)

- **Storage**
 - Charge on a capacitor
 - Decays over time (us-scale)
 - This is the “dynamic” part.
 - About $6F^2$: 20x better than SRAM

- **Reading**
 - Precharge
 - Assert word line
 - Sense output
 - Refresh data

Only one bit line is read at a time. The other bit line serves as a reference. The bit cells attached to Wordline 1 are not shown.
Dynamic Random Access Memory (DRAM)

• Storage
 • Charge on a capacitor
 • Decays over time (us-scale)
 • This is the “dynamic” part.
 • About 6F^2: 20x better than SRAM

• Reading
 • Precharge
 • Assert word line
 • Sense output
 • Refresh data

Only one bit line is read at a time. The other bit line serves as a reference. The bit cells attached to Wordline 1 are not shown.
Dynamic Random Access Memory (DRAM)

- **Storage**
 - Charge on a capacitor
 - Decays over time (us-scale)
 - This is the “dynamic” part.
 - About $6F^2$: 20x better than SRAM

- **Reading**
 - Precharge
 - Assert word line
 - Sense output
 - Refresh data

Only one bit line is read at a time. The other bit line serves as a reference. The bit cells attached to Wordline 1 are not shown.
Dynamic Random Access Memory (DRAM)

- **Storage**
 - Charge on a capacitor
 - Decays over time (us-scale)
 - This is the “dynamic” part.
 - About $6F^2$: 20x better than SRAM

- **Reading**
 - Precharge
 - Assert word line
 - Sense output
 - Refresh data

![DRAM Diagram]

Only one bit line is read at a time. The other bit line serves as a reference. The bit cells attached to Wordline 1 are not shown.
Dynamic Random Access Memory (DRAM)

- **Storage**
 - Charge on a capacitor
 - Decays over time (us-scale)
 - This is the “dynamic” part.
 - About $6F^2$: 20x better than SRAM

- **Reading**
 - Precharge
 - Assert word line
 - Sense output
 - Refresh data

![Diagram of DRAM structure](image)

- Only one bit line is read at a time.
- The other bit line serves as a reference.
- The bit cells attached to Wordline 1 are not shown.
DRAM: Write and Refresh

- **Writing**
 - Turn on the wordline
 - Override the sense amp.
- **Refresh**
 - Every few milli-seconds, read and re-write every bit.
 - Consumes power
 - Takes time
DRAM Lithography

Source: Hitachi/ICE, "Memory 1997"
Accessing DRAM

- Apply the row address
 - “opens a page”
 - Slow (~12ns read + 24 ns precharge)
 - Contents in a “row buffer”
- Apply one or more column addrs
 - fast (~3ns)
 - Reads and/or writes
Accessing DRAM

- Apply the row address
 - “opens a page”
 - Slow (~12ns read + 24 ns precharge)
 - Contents in a “row buffer”
- Apply one or more column addr
 - fast (~3ns)
 - Reads and/or writes
Accessing DRAM

- Apply the row address
 - “opens a page”
 - Slow (~12ns read + 24 ns precharge)
 - Contents in a “row buffer”
- Apply one or more column addrs
 - fast (~3ns)
 - Reads and/or writes
Accessing DRAM

- Apply the row address
 - “opens a page”
 - Slow (~12ns read + 24 ns precharge)
 - Contents in a “row buffer”
- Apply one or more column addr
 - fast (~3ns)
 - Reads and/or writes
Accessing DRAM

- Apply the row address
 - “opens a page”
 - Slow (~12ns read + 24 ns precharge)
 - Contents in a “row buffer”
- Apply one or more column addr
 - fast (~3ns)
 - Reads and/or writes
Accessing DRAM

- Apply the row address
 - “opens a page”
 - Slow (~12ns read + 24 ns precharge)
 - Contents in a “row buffer”
- Apply one or more column addresses
 - fast (~3ns)
 - Reads and/or writes
Accessing DRAM

- Apply the row address
 - “opens a page”
 - Slow (~12ns read + 24 ns precharge)
 - Contents in a “row buffer”
- Apply one or more column addresses
 - fast (~3ns)
 - Reads and/or writes
Accessing DRAM

- Apply the row address
 - “opens a page”
 - Slow (~12ns read + 24 ns precharge)
 - Contents in a “row buffer”
- Apply one or more column addr
 - fast (~3ns)
 - Reads and/or writes
Accessing DRAM

- Apply the row address
 - “opens a page”
 - Slow (~12ns read + 24 ns precharge)
 - Contents in a “row buffer”
- Apply one or more column addr
 - fast (~3ns)
 - Reads and/or writes
Accessing DRAM

- Apply the row address
 - “opens a page”
 - Slow (~12ns read + 24 ns precharge)
 - Contents in a “row buffer”
- Apply one or more column address
 - fast (~3ns)
 - Reads and/or writes
Accessing DRAM

- Apply the row address
 - “opens a page”
 - Slow (~12ns read + 24 ns precharge)
 - Contents in a “row buffer”
- Apply one or more column address
 - fast (~3ns)
 - Reads and/or writes
Accessing DRAM

- Apply the row address
 - “opens a page”
 - Slow (~12ns read + 24 ns precharge)
 - Contents in a “row buffer”
- Apply one or more column addresses
 - fast (~3ns)
 - Reads and/or writes
Accessing DRAM

- Apply the row address
 - “opens a page”
 - Slow (~12ns read + 24 ns precharge)
 - Contents in a “row buffer”
- Apply one or more column addr
 - fast (~3ns)
 - Reads and/or writes
Accessing DRAM

- Apply the row address
 - “opens a page”
 - Slow (~12ns read + 24 ns precharge)
 - Contents in a “row buffer”
- Apply one or more column addrs
 - fast (~3ns)
 - Reads and/or writes

![Diagram of DRAM access]
Accessing DRAM

- Apply the row address
 - “opens a page”
 - Slow (~12ns read + 24 ns precharge)
 - Contents in a “row buffer”
- Apply one or more column addr
 - fast (~3ns)
 - Reads and/or writes
DRAM Devices

• There are many banks per die (16 at left)
 • Multiple pages can be open at once.
 • Can keep pages open longer
 • Parallelism

• Example
 • open bank 1, row 4
 • open bank 2, row 7
 • open bank 3, row 10
 • read bank 1, column 8
 • read bank 2, column 32
 • ...

Micron 78nm 1Gb DDR3
DRAM: Micron MT47H512M4
DRAM: Micron MT47H512M4
DRAM Variants

- The basic DRAM technology has been wrapped in several different interfaces.
- SDRAM (synchronous)
- DDR SDRAM (double data-rate)
 - Data clocked on rising and falling edge of the clock.
- DDR2 -- faster, lower voltage DDR
- DDR3 -- even faster, even lower-voltage
- GDDR2-5 -- For graphics cards.
Current State-of-the-art: DDR3 SDRAM

- DIMM data path is 64bits (72 with ECC)
- Data rate: up to 1066Mhz DDR (2133Mhz effective)
- Bandwidth per DIMM GTNE: 16GB/s
 - guaranteed not to exceed
- Multiple DIMMs can attach to a bus
 - Reduces bandwidth/GB (a good idea?)

Each chip provides one 8-bit slice.
The chips are all synchronized and received the same commands
DRAM Scaling

- Long term need for performance has driven DRAM hard
 - complex interface.
 - High performance
 - High power.
- DRAM used to be the main driver for process scaling, now it’s flash.
- Power is now a major concern.
- Scaling is expected to match CMOS tech scaling
- F^2 cell size will probably not decrease
- Historical foot note: Intel got its start as a DRAM company, but got out of it when it became a commodity.