CSE140 – Spring 2013

CSE140 Homework #8

You must *SHOW ALL STEPS* for obtaining the solution. Reporting the correct answer, without showing the work performed at each step will result in getting 0 points for that problem.

1. RTL Design:
 Exercise 5.10 from Vahid's book
 (a) Use the RTL design method of Table 5.1 to convert the high-level state machine in Figure 5.94 to a controller and a datapath. Design the datapath to structure, but design the controller to an FSM only.

 ![Controller FSM](image1)

 ![Datapath](image2)

2. RTL Design:
 Exercise 5.11 from Vahid's book

 ![State Machine](image3)
3. RTL Design:
Exercise 5.18 from Vahid's book
Using the RTL design method shown in Table 5.1, create an RTL design for a digital filter that outputs the average of the current 32-bit input and the previous 32-bit sample. *Hint:* You can use a right shift to implement the divide within your datapath.
4. RTL Design:
Convert the following C code, which calculates the number of values that are not equal to \(b \) are within an array \(A \) consisting of 128 8-bit values, into a high-level state machine.

Inputs: byte \(a[128] \), byte \(b \), bit go
Outputs: byte \(freq \), bit \(done \)

FREQUENCY:
while(1) {
 while(!go);
 done = 0;
 i = 0;
 freq = 0;
 while (I < 128) {
 if (a[i] != b) {
 freq = freq + 1;
 }
 i = i + 1;
 }
 done = 1;
}

Inputs: go (bit), a (128-byte memory), b (8 bits)
Outputs: done (bit), \(freq \) (8 bits)

5. ALU Design:
Design a 4-bit ALU with the following functional table:

<table>
<thead>
<tr>
<th>M1</th>
<th>M0</th>
<th>Function Name</th>
<th>(F(A,B))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>(A+B) multiplied by 2</td>
<td>(2*(A+B))</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Increment A</td>
<td>(A+1)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Subtract B from A</td>
<td>(A-B)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>If (A == B) output A, otherwise output B</td>
<td>If (A==B) then A, else B</td>
</tr>
</tbody>
</table>

A and B are two 4-bit binary numbers.
M1, M0 are the control inputs for the Arithmetic Unit.
Use a minimum number of Full Adders, Comparators, and Multiplexers.