CSE 101 Final Exam
Time: 3 Hours

Some problems have multiple parts; do all parts. EXPLAIN ALL ANSWERS, with at least a few lines or sentences of precise English.

Order Notation
For each of the following answer “True” or “False” and give a brief explanation (1 or 2 lines or sentences.) Each is worth 4 points, 2 points for the correct answer and 2 points for the explanation or proof.

1. $1000n + 12500 \in \mathcal{O}(n \log n)$
2. $n^2 + (n - 1)^2 + (n - 2)^2 + ... 1^2 \in \mathcal{O}(n^2)$.
3. $2^{3n} \in \mathcal{O}(2^n)$.
4. If $n \geq 16$, an $\mathcal{O}(n \log n)$ time algorithm is always at least four times faster than an $\mathcal{O}(n^2)$ time algorithm.
5. If f and g are any positive, non-decreasing functions, then $(f(n) + g(n))^2 \in \Theta((f(n))^2 + (g(n))^2)$ (Prove or give counter-example.)

Divide and Conquer
The maximum weight sub-tree problem is as follows.
You are given a balanced binary tree T of size n, where each node $i \in T$ has a (not necessarily positive) weight $w(i)$ for each node $i \in T$. (Every node in T has pointers to its left-child, right-child, and parent, and you are given a pointer to the root of the tree. A NIL field for the children means the node is a leaf, and for the parent, means the node is the root. You are given a pointer to the root r of T.) A rooted sub-tree of T is a connected sub-graph of T containing the root r. (So a sub-tree is not necessarily the entire sub-tree rooted at a node. However, it cannot contain the children of a node without containing the node.) You wish to find the maximum possible value of the sum of weights of nodes in a rooted sub-tree S of T, $\sum_{i \in S} w(i)$.
Here is a recursive algorithm that solves this problem, given a pointer to the root of T:
MaxWtSubtree $[r]$

1. IF $r = NIL$ return 0.
2. $A \leftarrow \max(O, \text{MaxWtSubtree}[r.leftchild])$
3. $B \leftarrow \max(O, \text{MaxWtSubtree}[r.rightchild])$

1
a Give a recurrence and a time analysis for this algorithm in the case when \(T \) is a complete binary tree of height \(h \) and size \(n = 2^h - 1 \) (10 pts.)

b Prove that the same worst-case bound holds if \(T \) is any tree of size \(n \). (10 pts.)

Monotone matchings All the remaining questions concern variations of the following problem.

Let \(G \) be a bipartite graph, with \(L = \{u_1, \ldots, u_l\} \) the set of nodes on the left, \(R = \{v_1, \ldots, v_r\} \) the set of nodes on the right, \(E \) the set of edges, each with one endpoint in \(L \) and the other in \(R \), and \(m = |E| \) the number of edges.

A matching in \(G \) is a set of edges \(M \subseteq E \) so that no two edges in \(M \) share an endpoint (neither the one in \(L \) nor the one in \(R \)). A matching \(M \) is monotone if for every two edges \((u_{i_1}, v_{j_1})\) and \((u_{i_2}, v_{j_2})\) in \(M \), if \(i_1 < i_2 \) then \(j_1 < j_2 \). That is, one could draw all the edges in the matching without crossing, if the nodes are put in order on the two sides.

The problem is, given a bipartite graph \(G \), find the largest monotone matching in \(G \).

Assume \(l \leq r \). Then a monotone matching \(M \) is perfect if it has size \(l \), i.e., \(|M| = l\).

Greedy Algorithms and data structures Part 1 : 10 points Below is a greedy strategy for the largest monotone matching problem. Give a counter-example where it fails to produce the optimal solution. (Hint: Since below you will show that the algorithm works when the maximum monotone matching is perfect, your example shouldn’t have a perfect monotone matching.)

Candidate Strategy A : For each \(i = 1 \) to \(l \), if \(u_i \) has at least one undeleted neighbor \(v_j \), match it to the unmatched neighbor with smallest value of \(j \). Then delete \(u_i \) and \(v_1, \ldots, v_j \), and repeat.

Part 2: 5 pts Illustrate the above strategy on the following graph with a perfect matching: \(L = \{u_1, u_2, u_3\} \), \(R = \{v_1, v_2, v_3, v_4, v_5\} \), and \(E = \{(u_1, v_2), (u_1, v_3), (u_1, v_4), (u_2, v_1), (u_2, v_2), (u_2, v_3), (u_2, v_5), (u_3, v_1), (u_3, v_5)\} \)

Part 3: 10 points Prove that, if \(G \) has a perfect matching, then Candidate Strategy A finds one.

(Hint: Use one of the following two methods. Let strategy A match \(u_i \) with \(v_{j_i} \) (unless it can’t be matched). Let \(OPT \) be a perfect matching that matches each \(u_i \) with \(v_{k_i} \). (Note: all left nodes will be matched by \(OPT \), since it is perfect.)

Transformation method: Prove by induction on \(T \) that there is a left-perfect matching \(OPT_T \) that matches each \(u_i \) with \(v_{j_i} \) for \(1 \leq i \leq T \).
OR
Greedy-stays ahead: Prove by induction on \(T \) that \(v_{j_T} \) exists and that \(j_T \leq k_T \).

Part 4: 10 points Describe an efficient algorithm that carries out the strategy. Your description should specify which data structures you use, and any pre-processing steps. Assume the graph is given in adjacency list format. Give a time analysis, in terms of \(l, r \) and \(m \).

Back-tracking and Dynamic Programming The following recursive algorithm for the maximal monotone matching problem finds the maximum matching whether or not it is perfect. It branches on whether a node on the left is matched or unmatched. By the analysis of greedy algorithm A above, we can see that when a node is matched, it should always be matched to its smallest neighbor. The backtracking algorithm just returns the size of the maximum monotone matching, not the actual matching.

\[
\text{BTMMM}(G = (L = \{u_1, .., u_l\}, R = \{v_1, .., v_r\}, E): \text{bipartite graph})
\]

1. IF \(|L| = 0\) return 0.
2. \(\text{Unmatched} \leftarrow \text{BTMMM}(G - \{u_1\})\).
3. IF \(|N(u_1)| = 0\) return \(\text{Unmatched}\).
4. Let \(J \) be the first neighbor of \(u_1 \), i.e., the smallest value so that \(v_J \in N(u_1) \).
5. \(\text{Matched} \leftarrow 1 + \text{BTMMM}(G - \{u_1, v_1, .., v_J\})\)
6. Return \(\text{Max}(\text{Matched}, \text{Unmatched})\)

Part 1: 5 points Illustrate the above algorithm on your counter-example graph for the greedy strategy, (as a tree of recursive calls and answers.)

Part 2: 5 points Give an upper bound on the number of recursive calls the above algorithm makes, in the worst-case. (Be sure to explain your answer.)

Part 3: 10 points Give a dynamic programming version of the recurrence.

Part 4: 5 points Give a time analysis of this dynamic programming algorithm.

Part 5: 5 points Show the array or matrix that your dynamic programming algorithm produces on the example graph from Part 2 of the greedy algorithm.