CSE20 Lecture 3
Number Systems

2. Binary Numbers
3. Gray Code
4. Negative Numbers

CK Cheng, UC San Diego
Outlines

1. Goal of the Negative Number Systems
2. Definition
 2. 1’s Complement Rep.
 3. 2’s Complement Rep.
3. Arithmetic Operations
4.1 Goal of Negative Number System: iClicker

The goal of negative number system is

• A. to maximize the range of the numbers
• B. to simplify the hardware implementation
• C. to improve human interface
• D. All of the above.
4.1 Goal of negative number systems

• Signed system: Simple. Just flip the sign bit
 • 0 = positive
 • 1 = negative

• One’s complement: Replace subtraction with addition
 — Easy to derive (Just flip every bit)

• Two’s complement: Replace subtraction with addition
 — Addition of one’s complement and one produces the two’s complement.
4.2 Definitions: Given a positive integer x, we represent $-x$

- **1’s complement:**
 - Formula: $2^n - 1 - x$
 - i.e. $n=4$, $2^4 - 1 - x = 15 - x$
 - In binary: $(1111) - (b_3 b_2 b_1 b_0)$
 - Just flip all the bits.

- **2’s complement:**
 - Formula: $2^n - x$
 - i.e. $n=4$, $2^4 - x = 16 - x$
 - In binary: $(10000) - (0 b_3 b_2 b_1 b_0)$
 - Just flip all the bits and add 1.
4.2 Definitions: 4-bit example, id vs. value

Signed: $b_3=1$, 1’s: $15-x$, 2’s: $16-x$

<table>
<thead>
<tr>
<th>id</th>
<th>$b_3b_2b_1b_0$</th>
<th>Signed</th>
<th>1’s</th>
<th>2’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>....</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>-0</td>
<td>-7</td>
<td>-8</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>-1</td>
<td>-6</td>
<td>-7</td>
</tr>
<tr>
<td>10</td>
<td>1010</td>
<td>-2</td>
<td>-5</td>
<td>-6</td>
</tr>
<tr>
<td>11</td>
<td>1011</td>
<td>-3</td>
<td>-4</td>
<td>-5</td>
</tr>
<tr>
<td>12</td>
<td>1100</td>
<td>-4</td>
<td>-3</td>
<td>-4</td>
</tr>
<tr>
<td>13</td>
<td>1101</td>
<td>-5</td>
<td>-2</td>
<td>-3</td>
</tr>
<tr>
<td>14</td>
<td>1110</td>
<td>-6</td>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>15</td>
<td>1111</td>
<td>-7</td>
<td>-0</td>
<td>-1</td>
</tr>
</tbody>
</table>

15-x=id or id+x=15.
16-x=id or id+x=16.

$b_{n-1}=1$ for negative numbers
4.2 Definitions: 4-bit example, value vs. $b_3b_2b_1b_0$

<table>
<thead>
<tr>
<th>-x</th>
<th>signed</th>
<th>1’s</th>
<th>2’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0</td>
<td>1000</td>
<td>1111</td>
<td>0000</td>
</tr>
<tr>
<td>-1</td>
<td>1001</td>
<td>1110</td>
<td>1111</td>
</tr>
<tr>
<td>-2</td>
<td>1010</td>
<td>1101</td>
<td>1110</td>
</tr>
<tr>
<td>-3</td>
<td>1011</td>
<td>1100</td>
<td>1101</td>
</tr>
<tr>
<td>-4</td>
<td>1100</td>
<td>1011</td>
<td>1100</td>
</tr>
<tr>
<td>-5</td>
<td>1101</td>
<td>1010</td>
<td>1011</td>
</tr>
<tr>
<td>-6</td>
<td>1110</td>
<td>1001</td>
<td>1010</td>
</tr>
<tr>
<td>-7</td>
<td>1111</td>
<td>1000</td>
<td>1001</td>
</tr>
<tr>
<td>-8</td>
<td>NA</td>
<td>NA</td>
<td>1000</td>
</tr>
</tbody>
</table>
4.2 Definition: Example

Given bit width n=5 for x = 6 (00110)_2, we represent –x.

- Signed number: \((b_4b_3b_2b_1b_0)_2 = (10110)_2\)
- 1’s complement: \(2^5 - 1 - x = 32 - 1 - 6 = 25\)
 \((b_4b_3b_2b_1b_0)_2 = (11001)_2\)
- 2’s complement: \(2^5 - x = 32 - 6 = 26\)
 \((b_4b_3b_2b_1b_0)_2 = (11010)_2\)
4.2 Definition: iClicker

Given bit width n=5 for x= 11 (01011)₂, we represent –x in 1’s complement as

• A. (10100)₂
• B. (10101)₂
• C. (11010)₂
• D. None of the above.
4.2 Definitions: Examples
Given n-bits, what is the range of my numbers in each system?

• 3 bits:
 – Signed: -3, 3
 – 1’s: -3, 3
 – 2’s: -4, 3

• 6 bits
 – Signed: -31, 31
 – 1’s: -31, 31
 – 2’s: -32, 31

• 5 bits:
 – Signed: -15, 15
 – 1’s: -15, 15
 – 2’s: -16, 15

• Given 8 bits
 – Signed: -127, 127
 – 1’s: -127, 127
 – 2’s: -128, 127

Formula for calculating the range

Signed & 1’s: \((-2^{n-1} - 1), (2^{n-1} - 1)\)

2’s: \(-2^{n-1}, (2^{n-1} - 1)\)
4.3 Arithmetic Operation

- Conversion
- Addition and subtraction
- Inverse conversion
- Overflow
4.3 Arithmetic Operations: Conversion
Derivation of 1’s Complement

Theorem 1: For 1’s complement, given a positive number \((x_{n-1}, x_{n-2}, \ldots, x_0)_2\), the negative number is \((\bar{x}_{n-1}, \bar{x}_{n-2}, \ldots, \bar{x}_0)_2\) where \(\bar{x} = 1 - x\)

Proof:
(i). \(2^n - 1\) in binary is an n bit vector \((1,1, \ldots, 1)_2\)
(ii). \(2^n - 1 - x\) in binary is \((1,1, \ldots, 1)_2 - (x_{n-1}, x_{n-2}, \ldots, x_0)_2\).

The result is \((\bar{x}_{n-1}, \bar{x}_{n-2}, \ldots, \bar{x}_0)_2\)
4.3 Arithmetic Operations: Conversion
Derivation of 2’s Complement

Theorem 2: For 2’s complement, given a positive integer \(x \), the negative number is the sum of its 1’s complement and 1.

Proof: \(2^n - x = 2^n - 1 - x + 1 \). From theorem 1, we have

\[
\left(\bar{x}_{n-1}, \bar{x}_{n-2}, \ldots, \bar{x}_0 \right)_2 + (0, 0, \ldots, 1)_2
\]
4.3 Arithmetic Operations: Conversion

Ex: n=5, x = 9 \((01001)_2\)
1’s complement: \(2^5-1-x= 32-1-9=22\)
 \(=(10110)_2\)
2’s complement: \(2^5-x=32-9=23\)
 \(=(10111)_2\)

Ex: n=5, x = 13 \((01101)_2\)
1’s complement: \(2^5-1-x= 32-1-13=18\)
 \(=(10010)_2\)
2’s complement: \(2^5-x=32-13=18\)
 \(=(10011)_2\)
4.3 Conversion: One’s Complement

Hardware:

\[x_{n-1} \quad x_{n-2} \quad \ldots \quad x_0 \]

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Inverters
4.3 Addition and Subtraction:

Given two positive integers x & y, we replace subtraction with complement conversion. Suppose the sum is valid in the form of the complement. Then we don’t need subtraction in hardware implementation.
4.3 Addition and Subtraction: 2’s Comp.

<table>
<thead>
<tr>
<th>Arithmetic</th>
<th>Addition in 2’s comp.</th>
<th>Solution in 2’s comp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x + y$</td>
<td>$x + y$</td>
<td>$x + y$</td>
</tr>
<tr>
<td>$x - y$</td>
<td>$x + (2^n - y)$</td>
<td>$2^n + (x - y)$ (x(<y)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$x - y$ (x(\geq y$)</td>
</tr>
<tr>
<td>$-x + y$</td>
<td>$(2^n - x) + y$</td>
<td>$2^n + (-x + y)$ (x(> y$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$-x + y$ (x(\leq y$)</td>
</tr>
<tr>
<td>$-x - y$</td>
<td>$(2^n - x) + (2^n - y)$</td>
<td>$2^n - x - y$</td>
</tr>
</tbody>
</table>

Note the similarity of the last two columns.
4.3 Addition and Subtraction: 2’s Comp.

Input: two positive integers x & y,
1. We represent the operands in two’s complement.
2. We sum up the two operands and ignore bit n.
3. The result is the solution in two’s complement.

<table>
<thead>
<tr>
<th>Arithmetic</th>
<th>Addition in 2’s comp.</th>
<th>Solution in 2’s comp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>x - y</td>
<td>x + (2^n-y)=2^n+x-y</td>
<td>2^n+(x-y) (x<y)</td>
</tr>
<tr>
<td></td>
<td>If x<y, b_n=0</td>
<td>x-y (x>=y)</td>
</tr>
<tr>
<td></td>
<td>Else, b_n=1</td>
<td></td>
</tr>
<tr>
<td>-x + y</td>
<td>(2^n-x) + y =2^n-x+y</td>
<td>2^n+(-x+y) (x>y)</td>
</tr>
<tr>
<td></td>
<td>If x>y, b_n=0</td>
<td>-x+y (x<=y)</td>
</tr>
<tr>
<td></td>
<td>Else, b_n=1</td>
<td></td>
</tr>
<tr>
<td>-x - y</td>
<td>2^n+ (2^n-x-y)</td>
<td>2^n-x-y</td>
</tr>
<tr>
<td></td>
<td>b_n=1</td>
<td></td>
</tr>
</tbody>
</table>
4.3 Arithmetic Operations: 2’s comp.
Example: 4 – 3 = 1

In 2’s complement, we represent -3 as (1101)₂

\[
\begin{align*}
0100 \ (4) \\
+1101 \ (13=16-3) \\
\hline
10001 \ (17=16+1)
\end{align*}
\]

Formula: \(x + (2^n - y) = 4 + (16-3) = 16 + 1 \)
We discard the extra 1 at the left which is from 2’s complement of -3. Note that bit \(b_{n-1} \) is 0. Thus, the result is positive.
4.3 Arithmetic Operations: 2’s complement

Example: -4 +3 = -1

In 2’s comp., we represent -4 as \((1100)_2\)

\[
\begin{array}{c}
1100 \ (12=16-4) \\
+ 0011 \ (3) \\
\hline
1111 \ \Rightarrow \ -1 \text{ in 2’s comp.}
\end{array}
\]

Formula: \((2^n-x)+y=16-4+3=16-1=15 \ (-1 \text{ in 2’s comp.})\)

Note that \(b_{n-1}=1\). Thus, the solution is negative.
4.3 Arithmetic Operations: 2’s complement

Example: -4 -3 = -7

\[
\begin{align*}
1100 \ (12=16-4) \\
+ \quad 1101 \ (13=16-3) \\
\hline
11001 \rightarrow 25=16+16-7
\end{align*}
\]

Formula: \((2^n-x)+(2^n-y)=16-4+16-3=16+16-7\)

After we delete \(b_n\), the result is 16-7

Note that \(b_{n-1}=1\). Thus, the solution is negative.
4.3 Flow of 2’s Complement

- **Sub** = 0 for X+Y
- **Sub** = 1 for X-Y

Inverter
- Z = Y if Sub = 0
- 1’s comp of Y if Sub = 1

Adder
- Sum = A + B + Carry In
- Carry Out
- Carry In

A and **B**
- S = X + Y if Sub = 0
- S = X - Y (2’s comp) if Sub = 1

b_n
- Ignored
4.3 Addition and Subtraction: 1’s Comp.

<table>
<thead>
<tr>
<th>Arith.</th>
<th>Addition in 1’s</th>
<th>Sol. in 1’s comp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x + y$</td>
<td>$x + y$</td>
<td>$x + y$</td>
</tr>
</tbody>
</table>
| $x - y$ | $x + (2^n - 1 - y)$ | $2^n - 1 + (x - y)$ (if $x \leq y$)
$x - y$ (if $x > y$) |
| $-x + y$ | $(2^n - 1 - x) + y$ | $2^n - 1 + (-x + y)$ (if $x \geq y$)
$-x + y$ (if $x < y$) |
| $-x - y$ | $(2^n - 1 - x) + (2^n - 1 - y)$ | $2^n - 1 - x - y$ |
4.3 Addition and Subtraction: 1’s Comp.

Input: two positive integers x & y,
1. We represent the operands in one’s complement.
2. We sum up the two operands.
3. We delete $2^n - 1$ if $b_n = 1$.
4. The result is the solution in one’s complement.

<table>
<thead>
<tr>
<th>Arith.</th>
<th>Addition in 1’s</th>
<th>Result in 1’s comp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>x - y</td>
<td>$x + (2^n - 1 - y) = 2^n - 1 + (x - y)$. $b_n = 1$ if $x > y$</td>
<td>$2^n - 1 + (x - y)$ ($x \leq y$) $x - y$ ($x > y$)</td>
</tr>
<tr>
<td>-x + y</td>
<td>$(2^n - 1 - x) + y = 2^n - 1 + (-x + y)$. $b_n = 1$ if $x < y$</td>
<td>$2^n - 1 + (-x + y)$ ($x \geq y$) $-x + y$ ($x < y$)</td>
</tr>
<tr>
<td>-x - y</td>
<td>$(2^n - 1 - x) + (2^n - 1 - y) = 2^n - 1 + 2^n - 1 - x - y$. $b_n = 1$</td>
<td>$2^n - 1 - x - y$</td>
</tr>
</tbody>
</table>
4.3 Addition and Subtraction: 1’s Comp.
Example: 4 – 3 = 1

In 1’s complement, we represent -3 as \((1100)_2\)

\[
\begin{array}{c}
\text{0100 (4)} \\
+ \text{1100 (12=15-3)} \\
\text{10000 (16=15+1)} \\
\text{0001(after deleting } 2^{n-1})
\end{array}
\]

Formula: \(x+(2^n-1-y)=4+(15-3)=15+1\)

We discard bit \(b_n (-2^n)\) and add one at the first bit (+1), i.e. deduct \(2^n-1\).
4.3 Addition and Subtraction: 1’s Comp.
Example: -4 +3 = -1

In 1’s complement, we represent -4 as (1011)_2

\[
\begin{align*}
1011 \ (11 &= 15 - 4) \\
+ 0011 \ (3) \\
\hline
1110 \ (14 &= 15 - 1)
\end{align*}
\]

Formula: \((2^n - 1 - x) + y = 15 - 4 + 3 = 14\)
Note that \(b_{n-1} = 1\). Thus, the solution is a negative number.
4.3 Addition and Subtraction: 1’s Comp.

Example: \(-4 - 3 = -7\)

In 1’s complement, we represent \(-4\) as \((1011)_2\)
\(-3\) as \((1100)_2\)

\[
\begin{align*}
1011 & \quad (11=15-4) \\
+ 1100 & \quad (12=15-3) \\
\hline
1,0111 & \quad (23=15+15-7)
\end{align*}
\]

So now take \(b_n=1\) and remove it from the 5th spot and add it to the remainder

\[
\begin{align*}
\quad 0111 \\
+ \quad 1 \\
\hline
1000 & \quad (8=15-7)
\end{align*}
\]
4.3 Flow of 1’s Complement

- **Sum**: $A + B + \text{Carry In}$
- **Carry Out**: Z
- **Adder**: A (Carry Out) to B (Carry In)
- **Inverter**: X to Y
- **Sub**: 0 for $X+Y$, 1 for $X-Y$

- **Z**: Y if $\text{Sub}=0$, $1’s$ comp of Y if $\text{Sub}=1$
- **S**: $X+Y$ if $\text{Sub}=0$, $X-Y$ ($1’s$ comp) if $\text{Sub}=1$
4.3 Inverse Conversion

1's Compliment:
Let \(f(x) = 2^n - 1 - x \)
Theorem: \(f(f(x)) = x \)
Proof: \(f(f(x)) = f(2^n - 1 - x) \)
= \(f(2^n - 1 - x) \)
= \(2^n - 1 - (2^n - 1 - x) \)
= \(x \)

2's Compliment:
Let \(g(x) = 2^n - x \)
Theorem: \(g(g(x)) = x \)
Proof: \(g(g(x)) = g(2^n - x) \)
= \(g(2^n - x) \)
= \(2^n - (2^n - x) \)
= \(x \)
4.4 Overflow

Overflow occurs when the result lies beyond the range of the number system

Examples

Overflow Flag formula
4.4 Overflow: Examples (2’s Comp.)

2’ Comp: n=4, range -8 to 7

<table>
<thead>
<tr>
<th>Bit</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_a</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Y</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>$X+Y$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_a</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Y</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$X+Y$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_a</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>Y</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-3</td>
</tr>
<tr>
<td>$X+Y$</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_a</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-3</td>
</tr>
<tr>
<td>Y</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-6</td>
</tr>
<tr>
<td>$X+Y$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-9</td>
</tr>
</tbody>
</table>
4.4 Overflow: iCliker

For 2’s complement, overflow occurs when the following condition is true.

A. Both of C_n and C_{n-1} are one
B. Both of C_n and C_{n-1} are zero
C. Either of C_n and C_{n-1} is one but not both
D. None of the above.
4.4 Overflow Condition

Exercise:
1. State and prove the condition of the overflow of 1’s complement number system.
2. State and prove the condition of the overflow of 2’s complement number system.