4.1 Recursive function: analysis

1. A frog knows 5 jumping styles (A, B, C, D, E). A, B jump forward by 1 foot, and C, D, E jump forward by 2 feet. Let a_{i} denote the number of ways to jump over a total distance of i feet.
(a) What is a_{1}, a_{2}, a_{3} ?
(b) Derive the recursive formula of a_{n} ?
(c) Find the solution of the recursion.
2. Find the solution of the following recurrence:

$$
\begin{aligned}
& a_{n}=-a_{n-1}+a_{n-2}+a_{n-3} \\
& a_{0}=0 \\
& a_{1}=0 \\
& a_{2}=1
\end{aligned}
$$

3. Consider the following homogeneous linear recurrence relation:
$a_{n}=3 r a_{n-1}-3 r^{2} a_{n-2}+r^{3} a_{n-3}$. Show that $a_{n}=c_{1} r^{n}+c_{2} n r^{n}+c_{3} n^{2} r^{n}$ satisfies the recurrence relation, where c_{1}, c_{2}, and c_{3} are constant coefficients.

Solution:

A frog knows 5 jumping styles, named A, B, C, D, and E. Both A and B jump forward by one foot, while C, D, and E jump forward by two feet. Let a_{i} be the total number of ways to jump a total distance of i feet.

1. What are a_{1}, a_{2}, and a_{3} ?
2. Derive the recursive formulation of a_{i}.
3. Solve the recursion.

To start with, we note that there are only two ways to jump one foot, so

$$
a_{1}=2 .
$$

On the other hand, we have three ways to jump two feet using only one jump. We could also jump two feet by jumping one foot twice: all of the $2^{2}=4$
combinations $\mathrm{AA}, \mathrm{AB}, \mathrm{BA}$, and BB will work. Thus, we have the number of ways to jump two feet is

$$
a_{2}=3+2^{2}=3+4=7
$$

Now we need to figure out how to jump three feet. Consider the very last jump: it's a jump of either one foot or two feet. So let's first consider if the last jump is one foot long. Then we have $a_{2}=7$ ways to jump the initial two feet, and we can finish off the jumps in one of two ways (A and B), so we have $2 \times a_{2}=2 \times 7=14$ ways to jump three feet if we finish by jumping one foot. On the other hand, the last jump may be two feet long. In this case, we have $a_{1}=2$ ways to jump the first foot, and we can finish off the jumps in one of three ways (C, D, and E), so we have $3 \times a_{1}=3 \times 2=6$ ways to jump three feet if we finish by jumping two feet. Finally, we add all the ways to finish, both by making a final jump of two feet and one foot, to get

$$
a_{3}=14+6=20 .
$$

To figure out the recusion, we just generalize the argument we used for a_{3} : if we want to jump i feet, we can either jump $i-1$ feet and finish with A or B , or we can jump $i-2$ feet and finish with C , D , or E . Thus, we have

$$
a_{i}=2 a_{i-1}+3 a_{i-2}
$$

Finally, we have to solve the recurrence. The characteristic polynomial of the recurrence relation above is

$$
x^{2}-2 x-3=(x-3)(x+1) .
$$

This polynomial has the roots

$$
\begin{aligned}
& r_{1}=3 \\
& r_{2}=-1
\end{aligned}
$$

The general form of the solution to this recurrence is thus

$$
a_{i}=c_{1} r_{1}^{i}+c_{2} r_{2}^{i}=3^{i} c_{1}+(-1)^{i} c_{2} .
$$

We have only to solve for c_{1} and c_{2} using our initial conditions. We have the two equations

$$
\begin{aligned}
& a_{1}=3^{1} c_{1}+(-1)^{1} c_{2}=3 c_{1}+(-1) c_{2}=2 \\
& a_{2}=3^{2} c_{1}+(-1)^{2} c_{2}=9 c_{1}+c_{2}=7
\end{aligned}
$$

Adding these equations together, we get

$$
a_{1}+a_{2}=12 c_{1}=9
$$

and therefore

$$
c_{1}=\frac{3}{4} .
$$

Plugging this into the equation for a_{1} yields

$$
c_{2}=\frac{1}{4} .
$$

Thus, the solution to the recurrence is

$$
a_{i}=3^{i} \frac{3}{4}+(-1)^{i} \frac{1}{4}=\frac{1}{4}\left(3^{i+1}+(-1)^{i}\right) .
$$

Question 2

Find the solution of the following recurrence:

$$
\begin{aligned}
& a_{n}=-a_{n-1}+a_{n-2}+a_{n-3} \\
& a_{0}=0 \\
& a_{1}=0 \\
& a_{2}=1
\end{aligned}
$$

We first find the characteristic polynomial of the recurrence relation, which is

$$
x^{3}+x^{2}-x-1=(x-1)(x+1)^{2} .
$$

This polynomial has the roots

$$
\begin{aligned}
r_{1} & =1 \\
r_{2}=r_{3} & =-1
\end{aligned}
$$

Note that we have a root with multiplicity two (r_{2} and r_{3}). Thus, the general form of the solution will be

$$
a_{n}=c_{1} r_{1}^{n}+c_{2} r_{2}^{n}+c_{3} n r_{3}^{n}=c_{1}+(-1)^{n} c_{2}+(-1)^{n} n c_{3}
$$

Again, we solve for the constants using our initial conditions. We have the equations:

$$
\begin{array}{ll}
a_{0}=c_{1}+(-1)^{0} c_{2}+(-1)^{0} 0 c_{3}=c_{1}+c_{2} & =0 \\
a_{1}=c_{1}+(-1)^{1} c_{2}+(-1)^{1} 1 c_{3}=c_{1}+(-1) c_{2}+(-1) c_{3} & =0 \\
a_{2}=c_{1}+(-1)^{2} c_{2}+(-1)^{2} 2 c_{3}=c_{1}+c_{2}+2 c_{3} & =1
\end{array}
$$

Solving this system of linear equations yields the constants

$$
\begin{aligned}
& c_{1}=\frac{1}{4} \\
& c_{2}=-\frac{1}{4} \\
& c_{3}=\frac{1}{2}
\end{aligned}
$$

Thus, the solution to the recurrence is

$$
a_{n}=\frac{1}{4}+(-1)^{n}\left(\frac{1}{2} n-\frac{1}{4}\right) .
$$

Question 3

Consider the homogeneous linear recurrence relation

$$
a_{n}=3 r a_{n-1}-3 r^{2} a_{n-2}+r^{3} a_{n-3} .
$$

Show that

$$
p(n)=c_{1} r^{n}+c_{2} n r^{n}+c_{3} n^{2} r^{n}=r^{n}\left(c_{1}+c_{2} n+c_{3} n^{2}\right)
$$

satisfies the recurrence relation, where c_{1}, c_{2}, and c_{3} are constant coefficients.
We have to show that, if we plug in $p(n)$ in place of each a_{n} on the right hand side of the recurrence, we get $p(n)$ back out.

$$
\begin{aligned}
& 3 r p(n-1)-3 r^{2} p(n-2)+r^{3} p(n-3) \\
= & 3 r\left(r^{n-1}\left(c_{1}+c_{2}(n-1)+c_{3}(n-1)^{2}\right)\right) \\
& -3 r^{2}\left(r^{n-2}\left(c_{1}+c_{2}(n-2)+c_{3}(n-2)^{2}\right)\right) \\
& +r^{3}\left(r^{n-3}\left(c_{1}+c_{2}(n-3)+c_{3}(n-3)^{2}\right)\right) \\
= & 3 r^{n}\left(c_{1}+c_{2}(n-1)+c_{3}(n-1)^{2}\right) \\
& -3 r^{n}\left(c_{1}+c_{2}(n-2)+c_{3}(n-2)^{2}\right) \\
& +r^{n}\left(c_{1}+c_{2}(n-3)+c_{3}(n-3)^{2}\right) \\
= & r^{n}\left[3\left(c_{1}+c_{2}(n-1)+c_{3}(n-1)^{2}\right)\right. \\
& -3\left(c_{1}+c_{2}(n-2)+c_{3}(n-2)^{2}\right) \\
& \left.+\left(c_{1}+c_{2}(n-3)+c_{3}(n-3)^{2}\right)\right] \\
= & r^{n}\left[3 c_{1}+(3 n-3) c_{2}+\left(3 n^{2}-6 n+3\right) c_{3}\right. \\
& -3 c_{1}-(3 n-6) c_{2}-\left(3 n^{2}-12 n+12\right) c_{3} \\
& \left.+c_{1}+(n-3) c_{2}+\left(n^{2}-6 n+9\right) c_{3}\right] \\
= & r^{n}\left(c_{1}+n c_{2}+n^{2} c_{3}\right) \\
= & p(n)
\end{aligned}
$$

