CSE20 Midterm 2, May 12, 2011, Name \qquad

1. Residual Number System (10 points): Show the operation of 8×17 in a residual number system with moduli $\left(m_{1}, m_{2}, m_{3}\right)=(3,7,8)$.
2. Residual Number System (15 points): Suppose $(x \% 4, x \% 5, x \% 7)=(1,2,3)$, where symbol \% denotes modulus operation. Follow the procedure of Chinese remainder theorem to derive the smallest positive integer x that satisfies this system.
3. Boolean Algebra (10 points): State the definition of Boolean algebra.
4. Boolean Algebra (10 points): Use Boolean algebra (laws and theorems) to prove the De Morgan's theorem: $(a b)^{\prime}=a^{\prime}+b^{\prime}$.
5. Boolean Algebra (15 points): Use Boolean algebra (laws and theorems) to transform Boolean function, $E(a, b, c)=a^{\prime} b c+a b^{\prime}+b c^{\prime}$, into product-of-sums form.
6. Boolean Algebra (15 points): Reduce the following to an expression of a minimal number of literals: $E(a, b, c)=a^{\prime} b^{\prime}+b^{\prime} c+a c+b c+a^{\prime} b c^{\prime}$.
7. Recursive Function (15 points): A frog knows 3 jumping styles (A, B, C). Styles A, B jump forward by 1 foot, and style C jumps forward by 2 feet. Let a_{i} denote the number of ways to jump over a total distance of i feet.
(a) What is a_{1}, a_{2}, a_{3} ?
(b) Derive the recursive formula of a_{n}.
(c) Find the solution of the recursion.
8. Recursive Function (10 points): Consider the following homogeneous linear recurrence relation: $a_{n}=2 r a_{n-1}-r^{2} a_{n-2}$. Show that $a_{n}=c_{1} r^{n}+c_{2} n r^{n}$ satisfies the recurrence relation, where c_{1}, and c_{2}, are constant coefficients.
