CSE20 Midterm 2, February 18, 2010, Name \qquad

1. Residual Number System (10 points): Show the operation of 11×23 in a residual number system with moduli $\left(m_{1}, m_{2}, m_{3}\right)=(7,8,9)$.
2. Residual Number System (15 points): Suppose $(x \% 5, x \% 6, x \% 7)=(1,3,5)$, where symbol \% denotes modulus operation. Find the smallest positive integer x that satisfies this system.
3. Boolean Algebra (15 points): Express Boolean function
$E(x, y, z)=(x+y+z)\left(x^{\prime} y^{\prime}+x y^{\prime} z\right)^{\prime}$ in sum-of-products form.
4. Boolean Algebra (20 points): Express Boolean function
$E(x, y, z)=x^{\prime} y+x\left[\left(x^{\prime}+y\right)\left(y^{\prime}+z\right)\right]^{\prime}$ in product-of-sums form.
5. Boolean Algebra (20 points): Prove or disprove that for any elements a, b, and c in set B of Boolean algebra, we have the equality: $\left(a^{\prime}+c\right)(a+b)(b+c)=\left(a^{\prime}+c\right)(a+b)$. 6. Boolean Algebra (20 points): Reduce the following to an expression of a minimal number of literals (3): $E(a, b, c)=a b c+a c^{\prime} d+b c^{\prime} d^{\prime}+a^{\prime} b^{\prime} c^{\prime}+a b^{\prime} c^{\prime} d^{\prime}+b c^{\prime} d$.
