Solution and Grading Policy for Midterm One

Peng Du, Han Kim, Iman Sadeghi

University of California, San Diego

1 Problem One

- (a): 66 (5 points);
- (b): 133705 (5 points); partial credit for the decimal value 47045 (2 points);

2 Problem Two

- (a): $3^2 \times 5^7$ or $0 (3^2 \times 5^7 1)$ (5 points);
- (b): smallest: -2^9 or -512; largest: $2^9 1$ or 511; (5 points);

3 Problem Three

0	b	0.	0	<u> </u>
\underline{a}	0	c_{in}	s_{ur}	$n c_{out}$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Policy: 10 points if all correct, partial credit if a few of them are correct.

4 Problem Four

Policy: 10 points if all correct, partial credit in proportional to how many lines are correct.

0	0	0	0
0	0	0	1
0	0	1	1
0	0	1	0
0	1	1	0
0	1	1	1
0	1	0	1
0	1	0	0
1	1	0	0
1	1	0	1
1	1	1	1
1	1	1	0
1	0	1	0
1	0	1	1
1	0	0	1
1	0	0	0

5 Problem Five

17 = 00001000112 = 000001100(5 points)-17 = 111101110-12 = 11110011

(5 points)

6 Problem Six

- Eight's complement: $8^n x$ (5 points);
- x's representation: 7777562 (5 points);
- -x+y: 7777647 (5 points);
- Note: partial credit if there is only a few wrong bits in the solution;

 $\mathbf{2}$

Problem Seven $\mathbf{7}$

- (a): 4 (5 points);
- (b): 3 (5 points);
- (c): 4 (5 points);
 (d): 6 (5 points);

Problem Eight 8

Proof: Let $x = q_x d + r_x$, $y = q_y d + r_y$ (5 points)

$$(x \times y)\%d$$

= $[(q_xd + r_x) \times (q_yd + r_y)]\%d$
= $(q_xq_yd^2 + q_xr_yd + q_yr_xd + r_xr_y)\%d$ (key step)
= $(r_xr_y)\%d$
= $(x\%d \times y\%d)\%d$ (5 points)