Solution and Grading Policy for Midterm One

Peng Du, Han Kim, Iman Sadeghi
University of California, San Diego

1 Problem One

- (a): 66 (5 points);
- (b): 133705 (5 points); partial credit for the decimal value 47045 (2 points);

2 Problem Two

- (a): $3^{2} \times 5^{7}$ or $0-\left(3^{2} \times 5^{7}-1\right)$ (5 points);
- (b): smallest: -2^{9} or -512 ; largest: $2^{9}-1$ or 511 ; (5 points);

3 Problem Three

a	b	$c_{\text {in }}$	$s_{\text {um }} c_{\text {out }}$
0	0	0	00
0	0	1	0
0	1	0	10
0	1	1	0
1	0	0	0
1	0	1	$0 \quad 1$
1	1	0	01
1	1	1	1

Policy: 10 points if all correct, partial credit if a few of them are correct.

4 Problem Four

Policy: 10 points if all correct, partial credit in proportional to how many lines are correct.

0	0	0	0
0	0	0	1
0	0	1	1
0	0	1	0
0	1	1	0
0	1	1	1
0	1	0	1
0	1	0	0
1	1	0	0
1	1	0	1
1	1	1	1
1	1	1	0
1	0	1	0
1	0	1	1
1	0	0	1
1	0	0	0

5 Problem Five

$$
\begin{gathered}
17=000010001 \\
12=000001100 \\
(5 \text { points }) \\
-17=111101110 \\
-12=111110011
\end{gathered}
$$

(5 points)

$$
\begin{aligned}
& 111101110 \\
+ & 111110011 \\
- & --------- \\
& 111100001+1 \\
= & 111100010 \text { (5 points) }
\end{aligned}
$$

6 Problem Six

- Eight's complement: $8^{n}-x$ (5 points);
- x's representation: 7777562 (5 points);
- -x+y: 7777647 (5 points);
- Note: partial credit if there is only a few wrong bits in the solution;

7 Problem Seven

- (a): 4 (5 points);
- (b): 3 (5 points);
- (c): 4 (5 points);
- (d): 6 (5 points);

8 Problem Eight

Proof: Let $x=q_{x} d+r_{x}, y=q_{y} d+r_{y}$ (5 points)

$$
\begin{aligned}
& (x \times y) \% d \\
= & {\left[\left(q_{x} d+r_{x}\right) \times\left(q_{y} d+r_{y}\right)\right] \% d } \\
= & \left(q_{x} q_{y} d^{2}+q_{x} r_{y} d+q_{y} r_{x} d+r_{x} r_{y}\right) \% d \text { (key step) } \\
= & \left(r_{x} r_{y}\right) \% d \\
= & (x \% d \times y \% d) \% d \text { (5 points) }
\end{aligned}
$$

