Stereo Vision II

Introduction to Computer Vision
CSE 152
Lecture 14

Binocular Stereopsis: Mars
Given two images of a scene where relative locations of cameras are known, estimate depth of all common scene points.

Two images of Mars

Stereo Vision Outline

- Offline: Calibrate cameras & determine “epipolar geometry”
- Online
 1. Acquire stereo images
 2. Rectify images to convenient epipolar geometry
 3. Establish correspondence
 4. Estimate depth

Binocular Stereo System
Estimating Depth
2D world with 1-D image plane

Constants:
Baseline: d
Focal length: f

Disparity: (X_L - X_R)

Reconstruction: General 3-D case
Given two image measurements p and p', estimate P.

- Linear Method: find P such that
 \[\begin{align*}
 p \cdot MP &= 0 \\
 p' \cdot M'P &= 0
 \end{align*} \]
 Where M is camera matrix

- Non-Linear Method: find Q minimizing
 \[d(p, q) + d(p', q') \]
 where q=MQ and q'=M'Q

The search for correspondence:
Where do you look?
Two Approaches

1. Feature-Based
 - From each image, process “monocular” image to obtain image features or cues (e.g., corners, lines).
 - Establish correspondence between the detected features.

2. Area-Based
 - Directly compare image regions between the two images.

Human Stereopsis: Binocular Fusion

How are the correspondences established?

Julesz (1971): Is the mechanism for binocular fusion a monocular process or a binocular one??

• There is anecdotal evidence for the latter (camouflage).

Random dot stereograms provide an objective answer

Random Dot Stereograms

• Potential matches for \(p \) have to lie on the corresponding epipolar line \(l' \).
• Potential matches for \(p' \) have to lie on the corresponding epipolar line \(l \).
1. From image of known calibration fixture, determine intrinsic parameters and extrinsic relation of two cameras.
2. Compute the relative position and orientation of the two cameras from R_x, R_y, t_x, t_y
3. Compute the Essential Matrix $E = [t]R$

Skew Symmetric Matrix & Cross Product

- The cross product $a \times b$ of two vectors a and b can be expressed as a matrix vector product $[a]b$ where $[a]$ is the skew symmetric matrix:

 $[a] = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}$

- A matrix S is skew symmetric iff $S = -S^T$

Two ways to estimate the Essential Matrix

1. Calibration-based
2. Eight-Point Algorithm

The Eight-Point Algorithm (Longuet-Higgins, 1981)

$$[u, v \mid E_{11} E_{12} E_{13} \begin{bmatrix} u' \\ v' \end{bmatrix}] = 0$$

- Set E_{13} to 1
- Consider 8 points $(u_i, v_i), (u'_i, v'_i), i = 1, 8$

Solve E_{12} to E_{11}

The Essential Matrix
Properties of the Essential Matrix

\[\mathbf{p}' \mathbf{E} \mathbf{p} = 0 \text{ with } \mathbf{E} = [t, \mathbf{R}] \]

• \(\mathbf{E} \mathbf{p}' \) is the epipolar line associated with \(\mathbf{p}' \).
• \(\mathbf{E} \mathbf{p} \) is the epipolar line associated with \(\mathbf{p} \).
• \(\mathbf{E} \mathbf{e}' = 0 \) and \(\mathbf{E} \mathbf{e} = 0 \).
• \(\mathbf{E} \) is singular.
• \(\mathbf{E} \) has two equal non-zero singular values (Huang and Faugeras, 1989).

The Eight-Point Algorithm (Longuet-Higgins, 1981)

Much more on multi-view in CSE252B!!

\[
\begin{bmatrix} F_{11} & F_{12} & F_{13} \\ F_{21} & F_{22} & F_{23} \\ F_{31} & F_{32} & F_{33} \end{bmatrix} \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = 0
\]

\[
\begin{bmatrix} (u', v', x, y, u, v, x', y') \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix}
\]

• Following the text, view this as a system of homogeneous equations in \(F_{ij} \) to \(F_{ij} \).
• Solve as eigenvector corresponding to the smallest Eigenvalue of matrix created from the image data.

Equivalent to solving

\[
\sum_{i} (\mathbf{p}_i \mathbf{E} \mathbf{p}_i)^{-1}
\]

under the constraint

\[\mathbf{E} \mathbf{E}^T = 1. \]

The Fundamental Matrix

The epipolar constraint is given by: \(\mathbf{p}' \mathbf{E} \mathbf{p} = 0 \) with \(\mathbf{E} = [t, \mathbf{R}] \)

where \(\mathbf{p} \) and \(\mathbf{p}' \) are 3-D coordinates of the image coordinates of points in the two images.

Without calibration, we can still identify corresponding points in two images, but we can’t convert to 3-D coordinates. However, the relationship between the calibrated coordinates \((\mathbf{p}, \mathbf{p}') \) and uncalibrated image coordinates \((\mathbf{q}, \mathbf{q}') \) can be expressed as \(\mathbf{p} = \mathbf{A} \mathbf{q} \) and \(\mathbf{p}' = \mathbf{A}' \mathbf{q}' \).

Therefore, we can express the epipolar constraint as:

\[(\mathbf{A} \mathbf{q})^T \mathbf{E}(\mathbf{A}' \mathbf{q}') = \mathbf{q}^T (\mathbf{A}^T \mathbf{E} \mathbf{A}') \mathbf{q}' = 0 \]

where \(\mathbf{F} \) is called the Fundamental Matrix.

Can estimate \(\mathbf{F} \) using 8 point algorithm WITHOUT CALIBRATION

Epipolar geometry example

Example: converging cameras

Example: motion parallel with image plane

(simple for stereo → rectification)
Example: forward motion

courtesy of Andrew Zisserman