“Compiler and Runtime Support for Enabling Generalized Reduction Computations on Heterogeneous Parallel Computations”

By Ravi, Ma, Chiu, & Agrawal
Presented by Julian Bui
Outline

• Goals
• The focus problems
• Key ideas
• Results
Goals

• Programmability
• Performance
• Effective work distribution
The Focus Problems

• K-Means Clustering
• Principal Components Analysis
K-means clustering - 1
K-means clustering - 2
K-means clustering - 3
K-means clustering - 4
K-Means Clustering

1. Randomly guess k cluster center locations
2. Each datapoint figures out which cluster center it's closest to
3. Center now "owns" a set of points
4. Cluster calculates the actual center of the points it owns
5. Cluster's center point now becomes the actual center point
6. Repeat steps 2-5 until the cluster's dataset doesn't change between iterations
K-Means Clustering

\[J = \sum_{j=1}^{K} \sum_{n \in S_j} |x_n - \mu_j|^2 \]

For all clusters

Centroid of the cluster
Principal Component Analysis (PCA)

• Goals
 – Dimensionality Reduction
 • INPUT: set of M-dimensional pts
 • OUTPUT: set of D-dimensional pts where D << M
 – Extract patterns in the data, machine learning
 – Transforms possibly correlated data into a smaller number of uncorrelated data
 – Principal components account for the greatest possible statistical variability
PCA

• Principal components are found by extracting eigenvectors from the covariance matrix of the data
PCA – Facial Recognition
So how does this work apply to those problems?

• Code generator input:
 – Reduction function
 – Variable list (data to be computed)

• Code Generator output
 – Host functions
 – Kernel code
Figure 3: High-level Architecture of the System
Work Distribution

• Work Sharing vs. Work Stealing
• Uniform vs. Non-uniform chunk sizes
Experiments

Machine: AMD Opteron 8350 w/ 8 cores and 16 GB of main memory, GeForce9800 GTX w/ 512MB memory

K-Means: $K = 125$, 6.4GB file, 100M 3D points

PCA: 8.5GB data set, covariance matrix width of 64
GPU Chunk Size & Num. Threads vs. Performance

Figure 7: Scalability of K-Means with CPU-only and GPU-only

Figure 8: Scalability of PCA with CPU-only and GPU-only
K-Means, Hetero., Uni vs. Non-uniform chunk sizes

Figure 9: K-Means Using Heterogeneous Version with Uniform Chunk Size

Figure 10: K-Means Using Heterogeneous Version with Non-Uniform Chunk Size
PCA, Hetero., Uni vs. Non-uniform chunk sizes

Figure 11: PCA Using Heterogeneous Version with Uniform Chunk Size

Figure 12: PCA Using Heterogeneous Version with Non-Uniform Chunk Size
Idle Time

<table>
<thead>
<tr>
<th>K-Means</th>
<th>PCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chunk Size (MB)</td>
<td>Idle %</td>
</tr>
<tr>
<td>100</td>
<td>35.2</td>
</tr>
<tr>
<td>200</td>
<td>45</td>
</tr>
</tbody>
</table>

Table 1: % Idle with Uniform Chunk Size
Work Distribution – K-Means

Figure 13: Work Distribution (K-Means)
Work Distribution – PCA

Figure 14: Work Distribution (PCA)