Lecture 9

Communication Avoiding Algorithms
Matrix multiplication (SUMMA)
Announcements

• Project proposal: in class on Thursday
 ‣ 1-2 page written proposal
 ‣ 5-7 minute in-class presentation
Today’s lecture

• Communication Avoiding Algorithms
• SUMMA matrix multiplication algorithm (Hallgeir Lien)
Communication lower bounds (early results)

• Assume we are using an $O(n^3)$ algorithm
• Let $M =$ Size fast memory (cache/local memory)
• Sequential case: # slow memory references
 $\Omega \left(\frac{n^3}{\sqrt{M}} \right)$ [Hong and Kung '81]
• Parallel, $p =$ # processors,
 $\mu =$ Amount of memory needed to store matrices
 \begin{itemize}
 \item Refs to remote memory
 $\Omega \left(\frac{n^3}{p \sqrt{\mu}} \right)$ [Irony, Tiskin, Toledo, '04]
 \item If $\mu = 3n^2/p$ (one copy of A, B, C) \Rightarrow
 lower bound $= \Omega \left(\frac{n^2}{\sqrt{p}} \right)$ words
 \item Achieved by Cannon’s algorithm (“2D algorithm”)
 \item $T_p = 2n^3/p + 4\sqrt{p} (\alpha + \beta n^2/p)$
 \end{itemize}
Canon’s Algorithm - optimality

• General result
 ‣ If each processor has M words of local memory …
 ‣ … at least 1 processor must transmit $\Omega \left(\frac{\# \text{ flops}}{M^{1/2}} \right)$ words of data

• If local memory $M = O(n^2/p)$ …
 ‣ at least 1 processor performs $f \geq \frac{n^3}{p}$ flops
 ‣ … lower bound on number of words transmitted by at least 1 processor

$$
\Omega \left(\frac{(n^3/p)}{(n^2/p)^{1/2}} \right) = \Omega \left(\frac{(n^3/p)}{M^{1/2}} \right)
= \Omega \left(\frac{n^2}{p^{1/2}} \right)
$$

©2010 Scott B. Baden / CSE 262 / Spring '11
Limitations of Cannon’s Algorithm

• Difficult to generalize
 ‣ P is not a perfect square
 ‣ A and B are not square, and not evenly divisible by \sqrt{p}

• Interoperation with applications and other libraries difficult or expensive

• The SUMMA algorithm offers a practical alternative
 ‣ Uses a shift algorithm to broadcast
 ‣ A variant used in SCALAPACK

R. VAN DE GEIGN AND J. WATTS,
“SUMMA: Scalable universal matrix multiplication algorithm,”
www.netlib.org/lapack/lawns/lawn96.ps

• Hallgeir Lien
New communication lower bounds – direct linear algebra [Ballard & Demmel ’11]

• Let $M =$ amount of fast memory per processor
• Lower bounds
 ‣ # words moved by at least 1 processor
 $\Omega \left(\frac{\text{# flops}}{M^{1/2}} \right)$
 ‣ # messages sent by at least 1 processor
 $\Omega \left(\frac{\text{# flops}}{M^{3/2}} \right)$
• Holds not only for Matrix Multiply but many other “direct” algorithms in linear algebra
• Identify 3 values of M
 ‣ 2D (Cannon’s algorithm)
 ‣ 3D (Johnson’s algorithm)
 ‣ 2.5D (Ballard and Demmel)
Johnson’s 3D Algorithm

- 3D processor grid: $p^{1/3} \times p^{1/3} \times p^{1/3}$
 - Bcast A (B) in j (i) direction ($p^{1/3}$ redundant copies)
 - Local multiplications
 - Accumulate (Reduce) in k direction
- Communication costs (optimal)
 - Volume = $O(\frac{n^2}{p^{2/3}})$
 - Messages = $O(\log(p))$
- Assumes space for $p^{1/3}$ redundant copies
- Trade memory for communication

Cube representing $C(1,1) += A(1,3) \times B(3,1)$

Source: Edgar Solomonik
2.5D Algorithm

• What if we have space for only $1 \leq c \leq p^{1/3}$ copies?
• $M = \Omega(c \cdot n^2/p)$
• Communication costs: lower bounds
 ‣ Volume = $\Omega(n^2/(cp)^{1/2})$; Set $M = c \cdot n^2/p$ in $\Omega(# \text{ flops} / M^{1/2})$.
 ‣ Messages = $\Omega(p^{1/2}/c^{3/2})$; Set $M = c \cdot n^2/p$ in $\Omega(# \text{ flops} / M^{3/2})$.
• 2.5D algorithm “interpolates” between 2D & 3D algorithms.

Source: Edgar Solomonik
2.5D Algorithm

• Interpolate between 2D (Cannon) and 3D
 ‣ c copies of A & B
 ‣ Perform $p^{1/2}/c^{3/2}$ Cannon steps on each copy of A&B
 ‣ Sum contributions to C over all c layers

• Communication costs (not quite optimal, but not far off)
 ‣ Volume:
 \[O(n^2/(cp)^{1/2}) \]
 \[\Omega(n^2/(cp)^{1/2}) \]
 ‣ Messages:
 \[O(p^{1/2}/c^{3/2} + \log(c)) \]
 \[\Omega(p^{1/2}/c^{3/2}) \]

Source: Edgar Solomonik