SUMMA

Scalable Universal Matrix Multiplication Algorithm
Naïve matrix multiply

For $i = 0$ to n
 For $j = 0$ to n
 For $k = 0$ to n
 $C[i,j] += A[i,k]*B[k,j]$

Calculates n^2 dot products (inner products)
$C[i,j] = A[i,:]*B[:,j]$
Naïve matrix multiply

What happens if we switch the order?

For $k = 0$ to n
 For $i = 0$ to n
 For $j = 0$ to n
 $C[i,j] += A[i,k] * B[k,j]$
Naïve matrix multiply

What happens if we switch the order?

For \(k = 0 \) to \(n \)
 For \(i = 0 \) to \(n \)
 For \(j = 0 \) to \(n \)
 \(C[i,j] += A[i,k] \times B[k,j] \)

Calculates \(n \) outer products
Outer product

\[
\begin{align*}
\begin{bmatrix}
 a \\
 b \\
 c
\end{bmatrix} * \begin{bmatrix}
 e & f & g
\end{bmatrix} &=
\begin{bmatrix}
 a*e & a*f & a*g \\
 b*e & b*f & b*g \\
 c*e & c*f & c*g
\end{bmatrix}
\end{align*}
\]
Introducing SUMMA

- Processors arranged in grid, \(P(i,j) \)
- Example, 2x2 grid:

\[
\begin{array}{cccc}
P(1,1) & P(1,2) & \times & P(1,1) & P(1,2) \\
P(2,1) & P(2,2) & & P(2,1) & P(2,2) \\
\end{array}
\]

\[
\begin{array}{cccc}
P(1,1) & P(1,2) & \times & P(1,1) & P(1,2) \\
P(2,1) & P(2,2) & & P(2,1) & P(2,2) \\
\end{array}
\]
Introducing SUMMA

- Let $A=mxk$, $B=kxn \Rightarrow C=mxn$
- Let each process do k outer products

How do we handle the communication?
SUMMA

- For each k (between 0 and n-1),
 - Owner of partial row K broadcasts that row along its process column
 - Owner of partial column K broadcasts that column along its process row

Image credit: Stephen J. Fink
SUMMA

Complete algorithm. On each process $P(i,j)$:

For $k = 0...n-1$

- Bcast column k of A (a_i) within row i
- Bcast row k of B (b_j) within column j
- Do $C +=$ outer product (a_i,b_j)
Communication cost

• What's the cost of communication? Let α be the startup cost of a message, and β be the bandwidth
Communication cost

- What's the cost of communication? Let α be the startup cost of a message, and β be the bandwidth.
- Bcast among p processes takes $\log(p) \cdot (\alpha + \beta \cdot s)$ time, where s is the size of the message.
Communication cost

- Bcast among p processes takes $\log(p) (\alpha + \beta s)$ time, where s is the size of the message
- For each k, there are one Bcast along columns and one Bcast along rows
- Each partial column has size m/r, each partial row has size n/c
Communication cost

- Bcast among p processes takes $\log(p)$ $(\alpha+\beta s)$ time, where s is the size of the message
- Total: $k*(\log(c)(\alpha+\beta m/r)+\log(r)(\alpha+\beta n/c))$
- Not very efficient
 - Lots of messages
Improvements?

• Can we reduce the communication cost somehow?
Improvements?

- Can we reduce the communication cost somehow?
- Obvious improvement: Instead of broadcasting single rows and columns, do block rows and columns.
Improvements?

- Obvious improvement: Instead of broadcasting single rows and columns, do block rows and columns.
- Same amount of bytes communicated
- Fewer messages => less overhead
- More efficient (O(n^3) FLOPS, O(n^2) loads)
Pipelined SUMMA

• Another improvement:

• Instead of broadcast one row/column segment to all, pass multiple segments around in a ring

• Each process only communicates with neighbor => no broadcast => fewer messages
Pipelined SUMMA - Example

- Consider the following matrices A and B (color represents process rank)
Pipelined SUMMA - Example

- K=0: All processes multiply their first (block) column/row
Pipelined SUMMA - Example

- K=1: All processes send their first (block) col in A to the right, their first (block) row in B down in a ring pattern.
Pipelined SUMMA - Example

- And so on

(for reference)