CSE 202: Design and Analysis of Algorithms

Lecture 4

Instructor: Kamalika Chaudhuri
Greedy Algorithms

- Direct argument - MST
- Exchange argument - Caching
- Greedy approximation algorithms
Greedy Approximation Algorithms

- k-Center
- Set Cover
Approximation Algorithms

- Optimization problems, eg, MST, Shortest paths
- What do we optimize?
- What if we do not have enough resources to compute the optimal solution?
Approximation Algorithms

For an instance I of a **minimization problem**, let:

\[A(I) = \text{value of solution by algorithm A} \]

\[\text{OPT}(I) = \text{value of optimal solution} \]

Approximation ratio(A) = \(\max_I A(I)/\text{OPT}(I) \)

A is an **approx. algorithm** if approx-ratio(A) is bounded
Approximation Algorithms

For an instance \(I \) of a **minimization problem**, let:

\[
A(I) = \text{value of solution by algorithm } A
\]

\[
OPT(I) = \text{value of optimal solution}
\]

Approximation ratio(\(A \)) = \(\max_{I} A(I)/OPT(I) \)

\(A \) is an **approx. algorithm** if approx-ratio(\(A \)) is bounded

Higher approximation ratio means **worse** algorithm
Greedy Approximation Algorithms

- k-Center
- Set Cover
k-Center Problem

Given \textbf{n towns} on a map
Find how to place \textbf{k shopping malls} such that:
Drive to the nearest mall from any town is shortest
k-Center Problem

Given *n towns* on a map
Find how to place *k shopping malls* such that:
Drive to the nearest mall from any town is shortest
k-Center Problem

Given **n points** in a **metric space**
Find **k centers** such that distance between any point and its closest center is as small as possible

Metric Space:
Point set w/ **distance fn** d

Properties of d:
- $d(x, y) \geq 0$
- $d(x, y) = d(y, x)$
- $d(x, y) \leq d(x, z) + d(y, z)$

NP Hard in general
A Greedy Algorithm: Farthest-first traversal

1. Pick $C = \{x\}$, for an arbitrary point x
2. Repeat until C has k centers:

 Let y maximize $d(y, C)$, where

 $d(y, C) = \min_{x \in C} d(x, y)$

 $C = C \cup \{y\}$
A Greedy Algorithm: Farthest-first traversal

1. Pick \(C = \{x\} \), for an arbitrary point \(x \)
2. Repeat until \(C \) has \(k \) centers:

 Let \(y \) maximize \(d(y, C) \), where

 \[
 d(y, C) = \min_{x \in C} d(x, y)
 \]

 \(C = C \cup \{y\} \)
A Greedy Algorithm: Farthest-first traversal

1. Pick $C = \{x\}$, for an arbitrary point x
2. Repeat until C has k centers:
 - Let y maximize $d(y, C)$, where
 $d(y, C) = \min_{x \in C} d(x, y)$
 - $C = C \cup \{y\}$

$k=3$
A Greedy Algorithm: Farthest-first traversal

1. Pick \(C = \{x\} \), for an arbitrary point \(x \)
2. Repeat until \(C \) has \(k \) centers:

 Let \(y \) maximize \(d(y, C) \), where

 \[
 d(y, C) = \min_{x \in C} d(x, y)
 \]

 \(C = C \cup \{y\} \)

\(k = 3 \)
A Greedy Algorithm: Farthest-first traversal

1. Pick \(C = \{x\} \), for an arbitrary point \(x \)
2. Repeat until \(C \) has \(k \) centers:

 Let \(y \) maximize \(d(y, C) \), where

 \[d(y, C) = \min_{x \in C} d(x, y) \]

 \(C = C \cup \{y\} \)
Farthest-first Traversal

Is *farthest-first traversal* always optimal?

Theorem: Approx. ratio of farthest-first traversal is 2
Facts on Analyzing Approx. Algorithms

• Need to reason about the optimal solution
• Need to reason about the approx. algorithm relative to the optimal solution
Farthest-first (FF) Traversal

Theorem: Approx. ratio of FF-traversal is 2
Define, for any instance: \(r = \max_x d(x, C) \)
\(q = \text{argmax}_x d(x, C) \)

Metric Space:
Point set w/ distance fn \(d \)

Properties of \(d \):
- \(d(x, y) \geq 0 \)
- \(d(x, y) = d(y, x) \)
- \(d(x, y) \leq d(x, z) + d(y, z) \)

For a set \(S \),
\(d(x, S) = \min_{y \in S} d(x, y) \)

FF-traversal:
Pick \(C = \{x\} \), arbitrary \(x \)
Repeat until \(C \) has \(k \) centers:
Let \(y \) maximize \(d(y, C) \)
\(C = C \cup \{y\} \)

Property 1. Solution value of FF-traversal = \(r \)

Property 2. There are at least \(k+1 \) points \(S \) s.t each pair has distance \(\geq r \), where \(S = C \cup \{q\} \).

Property 3. The Optimal solution must assign at least two points \(x, y \) in \(S \) to the same center \(c \)

What is \(\max(d(x, c), d(y, c)) \)?
Farthest-first (FF) Traversal

Metric Space:
Point set with distance function \(d \)

Properties of \(d \):
- \(d(x, y) \geq 0 \)
- \(d(x, y) = d(y, x) \)
- \(d(x, y) \leq d(x, z) + d(y, z) \)

For a set \(S \),
\[
d(x, S) = \min_{y \in S} d(x, y)
\]

FF-traversal:
Pick \(C = \{x\} \), arbitrary \(x \)
Repeat until \(C \) has \(k \) centers:
- Let \(y \) maximize \(d(y, C) \)
- \(C = C \cup \{y\} \)

Theorem: Approx. ratio of FF-traversal is 2
Define, for any instance:
\[
r = \max_x d(x, C)
q = \arg\max_x d(x, C)
\]

Property 3. The optimal solution must assign at least two points \(x, y \) in \(S \) to the same center \(c \)

What is \(\max(d(x, c), d(y, c)) \)?

From property of \(d \),
\[
d(x, c) + d(y, c) \geq d(x, y)
\]
\[
\max(d(x, c), d(y, c)) \geq \frac{d(x, y)}{2}
\]
Farthest-first (FF) Traversal

Metric Space:
Point set w/ distance fn \(d\)

Properties of \(d\):
- \(d(x, y) \geq 0\)
- \(d(x, y) = d(y, x)\)
- \(d(x, y) \leq d(x, z) + d(y, z)\)

For a set \(S\),
\(d(x, S) = \min_{y \in S} d(x, y)\)

FF-traversal:
Pick \(C = \{x\}\), arbitrary \(x\)
Repeat until \(C\) has \(k\) centers:
Let \(y\) maximize \(d(y, C)\)
\(C = C \cup \{y\}\)

Theorem: Approx. ratio of FF-traversal is 2
Define, for any instance:
\[r = \max_x d(x, C) \]
\(q = \arg\max_x d(x, C) \)

Property 1. Solution value of FF-traversal = \(r\)

Property 2. There are at least \(k+1\) points \(S\) s.t each pair has distance \(\geq r\), where \(S = C \cup \{q\}\)

Property 3. The optimal solution must assign at least two points \(x, y\) in \(S\) to the same center \(c\)
\[\max(d(x, c), d(y, c)) \geq d(x, y)/2 \geq r/2 \]

Property 4. Thus, Opt. solution has value \(\geq r/2\)
Given **n points** in a **metric space**
Find **k centers** such that distance between any point and its closest center is as small as possible

FF-Traversal Algorithm:
1. Pick \(C = \{x\} \), for an arbitrary point \(x \)
2. Repeat until \(C \) has \(k \) centers:
 - Let \(y \) maximize \(d(y, C) \), where
 \[
 d(y, C) = \min_{x \in C} d(x, y)
 \]
 - \(C = C U \{y\} \)

k-center is **NP hard**, but **approx. ratio** of FF-traversal is **2**
Applications of k-center:

- Facility-location problems
- Clustering
Greedy Approximation Algorithms

- k-Center
- Set Cover
Set Cover Problem

Given:
• Universe U with n elements
• Collection C of sets of elements of U

Find the smallest subset C* of C that covers all of U

NP Hard in general
Set Cover Problem

Given:

- Universe \(U \) with \(n \) elements
- Collection \(C \) of sets of elements of \(U \)

Find the smallest subset \(C^* \) of \(C \) that covers all of \(U \)

NP Hard in general
A Greedy Set-Cover Algorithm

\[C^* = \{ \} \]

Repeat until all of \(U \) is covered:
- Pick the set \(S \) in \(C \) with highest \# of uncovered elements
- Add \(S \) to \(C^* \)
A Greedy Set-Cover Algorithm

\[C^* = \{ \} \]

Repeat until all of \(U \) is covered:

- Pick the set \(S \) in \(C \) with highest # of uncovered elements
- Add \(S \) to \(C^* \)
A Greedy Set-Cover Algorithm

\[C^* = \{ \} \]

Repeat until all of \(U \) is covered:
 - Pick the set \(S \) in \(C \) with highest \# of uncovered elements
 - Add \(S \) to \(C^* \)
A Greedy Set-Cover Algorithm

\[C^* = \{ \} \]

Repeat until all of \(U \) is covered:
 Pick the set \(S \) in \(C \) with highest \# of uncovered elements
 Add \(S \) to \(C^* \)
A Greedy Set-Cover Algorithm

\[C^* = \{ \} \]
Repeat until all of \(U \) is covered:
 Pick the set \(S \) in \(C \) with highest # of uncovered elements
 Add \(S \) to \(C^* \)
A Greedy Set-Cover Algorithm

\[C^* = \{ \} \]
Repeat until all of \(U \) is covered:
 Pick the set \(S \) in \(C \) with highest \# of uncovered elements
 Add \(S \) to \(C^* \)
A Greedy Set-Cover Algorithm

\[C^* = \emptyset \]

Repeat until all of \(U \) is covered:

 Pick the set \(S \) in \(C \) with highest \# of uncovered elements

 Add \(S \) to \(C^* \)
A Greedy Set-Cover Algorithm

C* = {}
Repeat until all of U is covered:
 Pick the set S in C with highest # of uncovered elements
 Add S to C*

Greedy: #sets=7
A Greedy Set-Cover Algorithm

$C^* = \{ \}$

Repeat until all of U is covered:

Pick the set S in C with highest # of uncovered elements
Add S to C^*

Greedy: #sets=7

OPT: #sets=5
Greedy Set-Cover Algorithm

Theorem: If optimal set cover has k sets, then greedy selects $\leq k \ln n$ sets

Greedy Algorithm:

$C^* = \{ \}$

Repeat until U is covered:

- Pick S in C with highest # of uncovered elements
- Add S to C^*

Define:

$n(t) =$ #uncovered elements after step t in greedy

Property 1: There is some S that covers at least $n(t)/k$ of the uncovered elements

Property 2: $n(t+1) \leq n(t)(1 - 1/k)$

Property 3: $n(T) \leq n(1 - 1/k)^T < 1$,
when $T = k \ln n$
Summary: set cover

Given: Universe U with \(n \) elements
Collection C of sets of elements of U
Find the **smallest subset** \(C^* \) of C that covers all of U

Greedy Algorithm:
\[C^* = \{ \} \]
Repeat until U is covered:
 Pick S in C with highest # of uncovered elements

Set-cover is **NP hard**, but **approx. ratio** of Greedy is \(O(\log n) \)
The Maximum Coverage Problem

Given:
- Universe U with n elements
- Collection C of sets of elements of U

Find a subset C^* of C of size k that covers as many elements of U as possible

A different version of Set-cover

NP hard
Greedy algorithm also has a good approx-ratio
Applications of Set Cover and Max. Coverage

- Facility location problems
- Submodular optimization
Greedy Algorithms

- Direct argument - MST
- Exchange argument - Caching
- Greedy approximation algorithms
 - k-center, set-cover
Algorithm Design Paradigms

• Exhaustive Search

• **Greedy Algorithms**: Build a solution incrementally piece by piece

• **Divide and Conquer**: Divide into parts, solve each part, combine results

• **Dynamic Programming**: Divide into subtasks, perform subtask by size. Combine smaller subtasks to larger ones

• **Hill-climbing**: Start with a solution, improve it
A Simple Divide and Conquer Example: Mergesort

Recurrence: \(T(n) = 2T(n/2) + cn \)

Solution: \(T(n) = O(n \log n) \)
Divide and Conquer

• Integer Multiplication

• Strassen’s Matrix Multiplication

• Closest pair of points on a Plane
How to multiply two n-bit numbers?

1. Create array of n intermediate sums
2. Add up the sums

Time per addition = $O(n)$
Total time = $O(n^2)$.

Can we do better?
Problem: How to multiply two n-bit numbers x and y?

$x = x_L 2^{n/2} + x_R$

$y = y_L 2^{n/2} + y_R$
A Simple Divide and Conquer

Problem: How to multiply two n-bit numbers x and y?

$x = x_L 2^{n/2} + x_R$

$y = y_L 2^{n/2} + y_R$

$xy = (x_L 2^{n/2} + x_R)(y_L 2^{n/2} + y_R)$

$= x_L y_L 2^n + (x_R y_L + x_L y_R) 2^{n/2} + x_R y_R$
Problem: How to multiply two n-bit numbers x and y?

\[x = x_L 2^{n/2} + x_R \]

\[y = y_L 2^{n/2} + y_R \]

\[xy = (x_L 2^{n/2} + x_R)(y_L 2^{n/2} + y_R) = x_L y_L 2^n + (x_R y_L + x_L y_R) 2^{n/2} + x_R y_R \]
A Simple Divide and Conquer

Problem: How to multiply two n-bit numbers x and y?

$x = x_L 2^{n/2} + x_R$

$y = y_L 2^{n/2} + y_R$

$xy = (x_L 2^{n/2} + x_R)(y_L 2^{n/2} + y_R)$

$= x_L y_L 2^n + (x_R y_L + x_L y_R) 2^{n/2} + x_R y_R$

Operations:
1. 4 multiplications of n/2 bit #s
2. Shifting by n bits
3. 3 additions

Recurrence:
$T(n) = 4T(n/2) + O(n)$
A Simple Divide and Conquer

Problem: How to multiply two n-bit numbers x and y?

$x = x_L 2^{n/2} + x_R$

$y = y_L 2^{n/2} + y_R$

$xy = (x_L 2^{n/2} + x_R)(y_L 2^{n/2} + y_R)$

$= x_L y_L 2^n + (x_R y_L + x_L y_R) 2^{n/2} + x_R y_R$

What is the base case?

Operations:

1. 4 multiplications of n/2 bit #s
2. Shifting by n bits
3. 3 additions

Recurrence:

$T(n) = 4T(n/2) + O(n)$

$T(n) = O(n^2)$
Problem: How to multiply two n-bit numbers x and y?

\[
x = x_L \ 2^{n/2} + x_R
\]

\[
y = y_L \ 2^{n/2} + y_R
\]

\[
xy = (x_L \ 2^{n/2} + x_R)(y_L \ 2^{n/2} + y_R)
\]

\[
= x_L y_L \ 2^n + (x_R \ y_L + x_L y_R) \ 2^{n/2} + x_R y_R
\]

Need: $x_L y_L$, $x_R y_R$, $(x_R y_L + x_L y_R)$

Computed by 3 multiplications as:

\[
(x_R y_L + x_L y_R) = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R
\]
A Better Divide and Conquer

Problem: How to multiply two n-bit numbers x and y?

$x = x_L 2^{n/2} + x_R$

$y = y_L 2^{n/2} + y_R$

$xy = (x_L 2^{n/2} + x_R)(y_L 2^{n/2} + y_R)$

$= x_L y_L 2^n + (x_R y_L + x_L y_R) 2^{n/2} + x_R y_R$

Need: $x_L y_L, x_R y_R, (x_R y_L + x_L y_R)$

Computed by 3 multiplications as:

$(x_R y_L + x_L y_R) = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R$

Operations:

1. 3 multiplications of $n/2$ bit #s
2. Shifting by n bits
3. 6 additions
A Better Divide and Conquer

Problem: How to multiply two n-bit numbers x and y?

$x = x_L 2^{n/2} + x_R$

$y = y_L 2^{n/2} + y_R$

$xy = (x_L 2^{n/2} + x_R)(y_L 2^{n/2} + y_R)$

$= x_L y_L 2^n + (x_R y_L + x_L y_R) 2^{n/2} + x_R y_R$

Need: $x_L y_L, x_R y_R, (x_R y_L + x_L y_R)$

Computed by 3 multiplications as:

$(x_R y_L + x_L y_R) = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R$

Operations:
1. 3 multiplications of $n/2$ bit #s
2. Shifting by n bits
3. 6 additions

Recurrence:

$T(n) = 3T(n/2) + O(n)$
A Better Divide and Conquer

Problem: How to multiply two \(n\)-bit numbers \(x\) and \(y\)?

\[
x = x_L 2^{n/2} + x_R
\]
\[
y = y_L 2^{n/2} + y_R
\]

\[
xy = (x_L 2^{n/2} + x_R)(y_L 2^{n/2} + y_R)
\]
\[
= x_L y_L 2^n + (x_R y_L + x_L y_R) 2^{n/2} + x_R y_R
\]

Need: \(x_L y_L, x_R y_R, (x_R y_L + x_L y_R)\)

Computed by 3 multiplications as:
\[
(x_R y_L + x_L y_R) = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R
\]

Operations:
1. 3 multiplications of \(n/2\) bit \#s
2. Shifting by \(n\) bits
3. 6 additions

Recurrence:
\[
T(n) = 3T(n/2) + O(n)
\]
\[
T(n) = O(n^{1.59})
\]
A Better Divide and Conquer

Problem: How to multiply two n-bit numbers \(x \) and \(y \)?

\[
x = x_L \cdot 2^{n/2} + x_R \\
y = y_L \cdot 2^{n/2} + y_R
\]

\[
xy = (x_L \cdot 2^{n/2} + x_R)(y_L \cdot 2^{n/2} + y_R) \\
= x_Ly_L \cdot 2^n + (x_Ry_L + x_ly_R) \cdot 2^{n/2} + x_Ry_R
\]

Need: \(x_Ly_L, x_Ry_R, (x_Ry_L + x_ly_R) \)

Computed by 3 multiplications as:

\[
(x_Ry_L + x_ly_R) = (x_L + x_R)(y_L + y_R) - x_Ly_L - x_Ry_R
\]

Best: \(O(n \log n \cdot 2^{O(\log^* n)}) \) [Furer07]

Operations:
1. 3 multiplications of n/2 bit #s
2. Shifting by n bits
3. 6 additions

Recurrence:
\[
T(n) = 3T(n/2) + O(n) \\
T(n) = O(n^{1.59})
\]
Divide and Conquer

- Integer Multiplication
- Strassen’s Matrix Multiplication
- Closest pair of points on a Plane
Problem: Given two $n \times n$ matrices X and Y, compute $Z = XY$

$$Z_{ij} = \sum X_{ik} Y_{kj}$$

Naive Method: $O(n^3)$ time
A Simple Divide and Conquer

Problem: Given two $n \times n$ matrices X and Y, compute $Z = XY$

$$X = \begin{bmatrix} A & B \\ C & D \end{bmatrix}, \quad Y = \begin{bmatrix} E & F \\ G & H \end{bmatrix}$$

$$Z = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix}$$

A..H: $n/2 \times n/2$

Algorithm 1:
1. Compute $AE, BG, CE, DG, AF, BH, CF, DH$
2. Compute $AE + BG, CE + DG, AF + BH, CF + DH$

Operations: 8 $n/2 \times n/2$ matrix multiplications, 4 additions

Recurrence: $T(n) = 8T(n/2) + O(n^2)$ \quad $T(n) = O(n^3)$
Strassen’s Algorithm

Problem: Given two $n \times n$ matrices X and Y, compute $Z = XY$

\[
X = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \\
Y = \begin{bmatrix} E & F \\ G & H \end{bmatrix}
\]

\[
Z = \begin{bmatrix} P_5 + P_4 - P_2 + P_6 & P_1 + P_2 \\ P_3 + P_4 & P_1 + P_5 - P_3 - P_7 \end{bmatrix}
\]

$A..H: n/2 \times n/2$

\[
P_1 = A(F - H) \\
P_2 = (A + B)H \\
P_3 = (C + D)E \\
P_4 = D(G - E) \\
P_5 = (A + D)(E + H) \\
P_6 = (B - D)(G + H) \\
P_7 = (A - C)(E + F)
\]

Operations: 7 $n/2 \times n/2$ matrix multiplications, $O(1)$ additions

Recurrence: $T(n) = 7 T(n/2) + O(n^2) \\
T(n) = O(n^{2.81})$
Strassen’s Algorithm

Problem: Given two $n \times n$ matrices X and Y, compute $Z = XY$

$$X = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \quad Y = \begin{bmatrix} E & F \\ G & H \end{bmatrix}$$

$$Z = \begin{bmatrix} P_5 + P_4 - P_2 + P_6 & P_1 + P_2 \\ P_3 + P_4 & P_1 + P_5 - P_3 - P_7 \end{bmatrix}$$

A..H: n/2 x n/2

$$P_1 = A(F - H) \quad P_3 = (C + D)E \quad P_5 = (A + D)(E + H)$$
$$P_2 = (A + B)H \quad P_4 = D(G - E) \quad P_6 = (B - D)(G + H)$$

Operations: 7 $n/2 \times n/2$ matrix multiplications, $O(1)$ additions

Recurrence: $T(n) = 7T(n/2) + O(n^2) \quad T(n) = O(n^{2.81})$

Best: $O(n^{2.37})$ by Coppersmith-Winograd[90]
Divide and Conquer

• Integer Multiplication
• Strassen’s Matrix Multiplication
• Closest pair of points on a Plane
Closest Pair of Points on a Plane

Given a set P of n points on the plane, find the two points p and q in P s.t $d(p, q)$ is minimum.
Closest Pair of Points on a Plane

Given a set P of n points on the plane, find the two points p and q in P s.t $d(p, q)$ is minimum

Naive solution $= O(n^2)$
What about one dimension?

Given a set P of n points on the line, find the two points p and q in P s.t $d(p, q)$ is minimum.

\[\bullet \]

P \hspace{1cm} q
What about one dimension?

Given a set P of n points on the line, find the two points p and q in P such that \(d(p, q)\) is minimum.

Property: The closest points are adjacent in sorted order.
What about one dimension?

Given a set P of n points on the line, find the two points p and q in P s.t $d(p, q)$ is minimum.

Property: The closest points are adjacent in sorted order.

Algorithm 1
1. Sort the points
2. Find a point p_i in the sorted set s.t $d(p_i, p_{i+1})$ is minimum
What about one dimension?

Given a set P of n points on the line, find the two points p and q in P s.t $d(p, q)$ is minimum

Property: The closest points are adjacent in sorted order

Algorithm 1
1. Sort the points
2. Find a point p_i in the sorted set s.t $d(p_i, p_{i+1})$ is minimum

Running Time = $O(n \log n)$
Does this work in 2D?

(a, b) : closest in x-coordinate
(a, q) : closest in y-coordinate
(p, q) : closest

Sorting the points by x or y coordinate, and looking at adjacent pairs does not work!