CSE 202: Design and Analysis of Algorithms

Lecture 3

Instructor: Kamalika Chaudhuri
Announcement

• Homework 1 out

• Due on **Mon April 11** in class

• No late homeworks will be accepted
Greedy Algorithms

- Direct argument - MST
- Exchange argument - Caching
- Greedy approximation algorithms
Last Class: MST Algorithms

- Kruskal’s Algorithm: Union-Find Data Structure
- Prim’s Algorithm
The Union-Find Data Structure

```plaintext
procedure makeset(x)
p[x] = x
rank[x] = 0

procedure find(x)
while x ≠ p[x]:
    p[x] = find(p[x])
return p[x]

procedure union(x,y)
rootx = find(x)
rooty = find(y)
if rootx = rooty: return
if rank[rootx] > rank[rooty]:
    p[rooty] = rootx
else:
    p[rootx] = rooty
    if rank[rootx] = rank[rooty]:
        rank[rooty]++
```
The Union-Find Data Structure

procedure makeset(x)
p[x] = x
rank[x] = 0

procedure find(x)
while x ≠ p[x]:
 p[x] = find(p[x])
return p[x]

procedure union(x,y)
rootx = find(x)
rooty = find(y)
if rootx = rooty: return
if rank[rootx] > rank[rooty]:
 p[rooty] = rootx
else:
 p[rootx] = rooty
 if rank[rootx] = rank[rooty]:
 rank[rooty]++
The Union-Find Data Structure

Procedure makeset(x)

```plaintext
p[x] = x
rank[x] = 0
```

Procedure find(x)

```plaintext
while x ≠ p[x]:
    p[x] = find(p[x])
return p[x]
```

Procedure union(x,y)

```plaintext
rootx = find(x)
rooty = find(y)
if rootx = rooty: return
if rank[rootx] > rank[rooty]:
    p[rooty] = rootx
else:
    p[rootx] = rooty
    if rank[rootx] = rank[rooty]:
        rank[rooty]++
```

Property 1: If x is not a root, then rank[p[x]] > rank[x]

Proof: By property of union

Property 2: For root x, if rank[x] = k, then subtree at x has size ≥ 2^k

Proof: By induction

Property 3: There are at most n/2^k nodes of rank k

Proof: Combining properties 1 and 2
The Union-Find Data Structure

Property 1: If x is not a root, then rank[p[x]] > rank[x]

Property 2: For root x, if rank[x] = k, then subtree at x has size >= 2^k

Property 3: There are at most n/2^k nodes of rank k

Interval I_k = [k+1, k+2, .., 2^k]

Break up 1..n into intervals I_k = [k+1, k+2, .., 2^k]

Example: [1], [2], [3, 4], [5,..,16], [17,..,65536],...

How many such intervals? log*n

Charging Scheme: For non-root x, if rank[x] is in I_k, set t(x) = 2^k
Running time of m find operations

Property 1: If x is not a root, then $\text{rank}[p[x]] > \text{rank}[x]

Property 2: For root x, if $\text{rank}[x] = k$, then subtree at x has size $\geq 2^k$

Property 3: There are at most $n/2^k$ nodes of rank k

Interval $I_k = [k+1, k+2, .., 2^k]$
#intervals = $\log^* n$

Two types of nodes in a find operation:
1. $\text{rank}[x], \text{rank}[p[x]]$ lie in different intervals
2. $\text{rank}[x], \text{rank}[p[x]]$ lie in same interval

#nodes of type 1 $\leq \log^* n$
Time spent on nodes of type 1 in m finds $\leq m \log^* n$
Running time of \(m \) find operations

Property 1: If \(x \) is not a root, then \(\text{rank}[p[x]] > \text{rank}[x] \)

Property 2: For root \(x \), if \(\text{rank}[x] = k \), then subtree at \(x \) has size \(\geq 2^k \)

Property 3: There are at most \(n/2^k \) nodes of rank \(k \)

Two types of nodes in a find operation:

1. \(\text{rank}[x], \text{rank}[p[x]] \) lie in different intervals
2. \(\text{rank}[x], \text{rank}[p[x]] \) lie in same interval

When a **type 2** node is touched, its parent has higher rank

Time on a **type 2** node before it becomes **type 1** \(\leq 2^k \)

Interval \(I_k = [k+1, k+2, \ldots, 2^k] \)

#intervals = \(\log^* n \)
Running time of m find operations

Property 1: If x is not a root, then rank[p[x]] > rank[x]

Property 2: For root x, if rank[x] = k, then subtree at x has size >= \(2^k\)

Property 3: There are at most \(n/2^k\) nodes of rank k

Total time on \(m\) find operations <= \(m \log^*n + \sum t(x)\)

Two types of nodes in a find operation:

1. rank[x], rank[p[x]] lie in **different** intervals
2. rank[x], rank[p[x]] lie in **same** interval

Interval \(I_k = [k+1, k+2, ..., 2^k]\)
#intervals = \(\log^*n\)
The Union-Find Data Structure

Property 1: If x is not a root, then $\text{rank}[p[x]] > \text{rank}[x]$

Property 2: For root x, if $\text{rank}[x] = k$, then subtree at x has size $\geq 2^k$

Property 3: There are at most $n/2^k$ nodes of rank k

Interval l_k: $[k+1, k+2, .., 2^k]$

Break up $1..n$ into intervals $l_k = [k+1, k+2, .., 2^k]$

Charging Scheme: If $\text{rank}[x]$ is in l_k, set $t(x) = 2^k$

Total time on m find operations $\leq m \log^*n + \sum t(x)$

Therefore, we need to estimate $\sum t(x)$
The Union-Find Data Structure

Property 1: If x is not a root, then $\text{rank}[p[x]] > \text{rank}[x]$

Property 2: For root x, if $\text{rank}[x] = k$, then subtree at x has size $\geq 2^k$

Property 3: There are at most $n/2^k$ nodes of rank k

Interval $I_k = [k+1, k+2, .., 2^k]$ \quad \#intervals $= \log^*n$

Break up $1..n$ into intervals $I_k = [k+1, k+2, .., 2^k]$

Charging Scheme: If $\text{rank}[x]$ is in I_k, set $t(x) = 2^k$

Total time on m find operations $\leq m\log^*n + \sum t(x)$

From **Property 3**, \#nodes with rank in I_k is at most:

$n/2^{k+1} + n/2^{k+2} + ... < n/2^k$

Therefore, for each interval I_k, $\sum_{x \in I_k} t(x) \leq n$

As \#intervals $= \log^*n$, $\sum t(x) \leq n \log^*n$
Summary: Union-Find Data Structure

```plaintext
procedure makeset(x)
p[x] = x
rank[x] = 0

procedure find(x)
while x ≠ p[x]:
    p[x] = find(p[x])
return p[x]

procedure union(x,y)
rootx = find(x)
rooty = find(y)
if rootx = rooty: return
if rank[rootx] > rank[rooty]:
    p[rooty] = rootx
else:
    p[rootx] = rooty
    if rank[rootx] = rank[rooty]:
        rank[rooty]++
```

Property 1: Total time for m find operations = $O((m+n) \log^* n)$

Property 2: Time for each union operation = $O(1) + \text{Time(find)}$
Summary: Kruskal’s Algorithm
Running Time

\[X = \{ \} \]
For each edge \(e \) in **increasing order** of weight:
- If the end-points of \(e \) lie in different components in \(X \),
- Add \(e \) to \(X \)

Sort the edges = \(O(m \log m) = O(m \log n) \)
Add e to \(X \) = Union Operation = \(O(1) + \text{Time}(\text{Find}) \)
Check if end-points of \(e \) lie in different components = Find Operation

Total time = Sort + \(O(n) \) Unions + \(O(m) \) Finds = \(O(m \log n) \)
With sorted edges, time = \(O(n) \) Unions + \(O(m) \) Finds = \(O(m \log^* n) \)
MST Algorithms

- Kruskal’s Algorithm: Union-Find Data Structure
- Prim’s Algorithm: How to Implement?
Prim’s Algorithm

$X = \{\}$, $S = \{r\}$
Repeat until S has n nodes:
 - Pick the **lightest** edge e in the cut $(S, V - S)$
 - Add e to X
 - Add v, the end-point of e in $V - S$ to S
Prim’s Algorithm

X = {}, S = {r}
Repeat until S has n nodes:
 Pick the **lightest** edge e in the cut (S, V - S)
 Add e to X
 Add v, the end-point of e in V - S to S

How to implement Prim’s algorithm?

Need data structure for edges with the operations:
1. **Add** an edge
2. **Delete** an edge
3. **Report** the edge with **min** weight
Data Structure: Heap

Heap Property: If x is the parent of y, then $\text{key}(x) \leq \text{key}(y)$

A heap is stored as a balanced binary tree

Height $= \mathcal{O}(\log n)$, where $n = \# \text{ nodes}$
Heap: Reporting the min

Heap Property: If x is the parent of y, then $\text{key}(x) \leq \text{key}(y)$
Heap: Reporting the min

Heap Property: If \(x \) is the parent of \(y \), then \(\text{key}(x) \leq \text{key}(y) \)

Report the root node

Time = \(O(1) \)
Heap Property: If x is the parent of y, then key(x) <= key(y)

Add item u to the end of the heap
If heap property is violated, swap u with its parent
Heap Property: If x is the parent of y, then $\text{key}(x) \leq \text{key}(y)$

Add item u to the end of the heap

If heap property is violated, swap u with its parent
Heap Property: If x is the parent of y, then $\text{key}(x) \leq \text{key}(y)$

Add item u to the end of the heap

If heap property is violated, swap u with its parent
Heap Property: If x is the parent of y, then $\text{key}(x) \leq \text{key}(y)$

Add item u to the end of the heap
If heap property is violated, swap u with its parent
Heap: Add an item

Heap Property: If \(x \) is the parent of \(y \), then \(\text{key}(x) \leq \text{key}(y) \)

Add item \(u \) to the end of the heap

If heap property is violated, swap \(u \) with its parent
Heap Property: If x is the parent of y, then key(x) <= key(y)

Add item u to the end of the heap
If heap property is violated, swap u with its parent

Time = O(log n)
Heap Property: If \(x \) is the parent of \(y \), then \(\text{key}(x) \leq \text{key}(y) \)

Delete item \(u \)

Move \(v \), the last item to \(u \)'s position
Heap Property: If x is the parent of y, then key(x) \leq key(y)

If heap property is violated:

- **Case 1.** $\text{key}[v] > \text{key}[ext{child}[v]]$
- **Case 2.** $\text{key}[v] < \text{key}[ext{parent}[v]]$
Heap Property: If \(x \) is the parent of \(y \), then \(\text{key}(x) \leq \text{key}(y) \)

If heap property is violated:

Case 1. \(\text{key}[v] > \text{key}[\text{child}[v]] \)

Swap \(v \) with its lowest key child
Heap Property: If \(x \) is the parent of \(y \), then \(\text{key}(x) \leq \text{key}(y) \)

If heap property is violated:

Case 1. \(\text{key}[v] > \text{key}[\text{child}[v]] \)

Swap \(v \) with its **lowest key** child

Continue until heap property holds

Time = \(O(\log n) \)
Heap Property: If x is the parent of y, then $\text{key}(x) \leq \text{key}(y)$

If heap property is violated:

Case 2. $\text{key}[v] < \text{key}[\text{parent}[v]]$

Swap v with its **parent**

Continue till heap property holds

Time = $O(\log n)$
Heap Property: If \(x \) is the parent of \(y \), then \(\text{key}(x) \leq \text{key}(y) \)

If heap property is violated:

Case 2. \(\text{key}[v] < \text{key}[\text{parent}[v]] \)

Swap \(v \) with its **parent**

Continue till heap property holds

Time = \(O(\log n) \)
Heap Property: If x is the parent of y, then $\text{key}(x) \leq \text{key}(y)$

If heap property is violated:

Case 2. $\text{key}[v] < \text{key}[\text{parent}[v]]$

Swap v with its parent

Continue till heap property holds

Time = $O(\log n)$
Heap Property: If \(x \) is the parent of \(y \), then \(\text{key}(x) \leq \text{key}(y) \)

If heap property is violated:

Case 2. \(\text{key}[v] < \text{key}[\text{parent}[v]] \)

Swap \(v \) with its parent

Continue till heap property holds

Time = \(O(\log n) \)
Summary: Heap

Heap Property: If x is the parent of y, then $\text{key}(x) \leq \text{key}(y)$

Operations:
- Add an element: $O(\log n)$
- Delete an element: $O(\log n)$
- Report min: $O(1)$
Prim’s Algorithm

X = {}, **S = {r}**

Repeat until **S** has **n** nodes:

1. Pick the **lightest** edge **e** in the cut (**S**, **V - S**)
2. Add **e** to **X**
3. Add **v**, the end-point of **e** in **V - S** to **S**

Use a **heap** to store edges between **S** and **V - S**

At each step:

1. Pick lightest edge with a report-min
2. Delete all edges b/w **v** and **S** from heap
3. Add all edges b/w **v** and **V - S** - **{v}**

Black edges = in heap
Prim’s Algorithm

\[X = \{ \}, S = \{r\} \]
Repeat until \(S \) has \(n \) nodes:
- Pick the **lightest** edge \(e \) in the cut \((S,V - S)\)
- Add \(e \) to \(X \)
- Add v, the end-point of \(e \) in \(V - S \) to \(S \)

Use a **heap** to store edges between \(S \) and \(V - S \)
At each step:
1. Pick lightest edge with a report-min
2. Delete all edges b/w v and \(S \) from heap
3. Add all edges b/w v and \(V - S \) - \{v\}

#edge additions and deletions = \(O(m) \) (Why?)
#report mins = \(O(n) \)
Prim’s Algorithm

X = { }, S = {r}
Repeat until S has n nodes:
 - Pick the **lightest** edge e in the cut (S, V - S)
 - Add e to X
 - Add v, the end-point of e in V - S to S

Use a **heap** to store edges b/w S and V - S
At each step:
 1. Pick lightest edge with a report-min
 2. Delete all edges b/w v and S from heap
 3. Add all edges b/w v and V - S - {v}

edge additions and deletions = O(m)
report mins = O(n)

Heap Ops:
- Add: O(log n)
- Delete: O(log n)
- Report min: O(1)
Prim’s Algorithm

X = { }, S = {r}
Repeat until S has n nodes:
 1. Pick the **lightest** edge e in the cut (S, V - S)
 2. Add e to X
 3. Add v, the end-point of e in V - S to S

Use a **heap** to store edges b/w S and V - S
At each step:
 1. Pick lightest edge with a report-min
 2. Delete all edges b/w v and S from heap
 3. Add all edges b/w v and V - S - {v}

#edge additions and deletions = O(m)
#report mins = O(n)
Total running time = O(m log n)

Heap Ops:
Add: O(log n)
Delete: O(log n)
Report min: O(1)
Summary: Prim’s Algorithms

\[X = \{ \}, S = \{r\} \]

Repeat until \(S \) has \(n \) nodes:

- Pick the **lightest** edge \(e \) in the cut \((S, V - S)\)
- Add \(e \) to \(X \)
- Add \(v \), the end-point of \(e \) in \(V - S \) to \(S \)

Implementation: Store edges from \(S \) to \(V - S \) using a heap

Running Time: \(O(m \log n) \)
MST Algorithms

- Kruskal’s Algorithm: Union-Find Data Structure
- Prim’s Algorithm: How to Implement?
- An Application of MST: Single Linkage Clustering
Single Linkage Clustering

Procedure:

Initialize: each node is a cluster

Until we have one cluster:

- Pick two *closest* clusters C, C^*
- Merge $S = C \cup C^*$

Distance between two clusters:

$$d(C, C^*) = \min_{x \in C, y \in C^*} d(x, y)$$

Can you recognize this algorithm?
Greedy Algorithms

- Direct argument - MST
- Exchange argument - Caching
- Greedy approximation algorithms
Optimal Caching

Given a sequence of memory accesses, limited cache: How do you decide which cache element to evict?

Note: We are given future memory accesses for this problem, which is usually not the case. This is for an application of greedy algorithms.
Optimal Caching: Example

Given a sequence of memory accesses, limited cache size, How do you decide which cache element to evict?

Goal: Minimize #main memory fetches
Optimal Caching: Example

Given a sequence of memory accesses, limited cache size, How do you decide which cache element to evict?

Goal: Minimize #main memory fetches

<table>
<thead>
<tr>
<th>M</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>b</th>
<th>c</th>
<th>b</th>
<th>c</th>
<th>b</th>
<th>a</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>a</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

Memory Access Sequence

Cache Contents

Evicted items
Optimal Caching: Example

<table>
<thead>
<tr>
<th>M</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>b</th>
<th>c</th>
<th>b</th>
<th>a</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Memory Access Sequence

Cache Contents

Evicted items

Given a sequence of memory accesses, limited cache size, How do you decide which cache element to evict?

Goal: Minimize #main memory fetches
Optimal Caching: Example

Given a sequence of memory accesses, limited cache size, How do you decide which cache element to evict?

Goal: Minimize #main memory fetches
Optimal Caching: Example

Given a sequence of memory accesses, limited cache size, How do you decide which cache element to evict?

Goal: Minimize \#main memory fetches
Optimal Caching: Example

<table>
<thead>
<tr>
<th>M</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>b</th>
<th>c</th>
<th>b</th>
<th>a</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>-</td>
<td>-</td>
<td>b</td>
<td>a</td>
<td>-</td>
<td>c</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Memory Access Sequence
Cache Contents
Evicted items

Given a sequence of memory accesses, limited cache size, How do you decide which cache element to evict?

Goal: Minimize #main memory fetches
Optimal Caching: Example

Given a sequence of memory accesses, limited cache size,
How do you decide which cache element to evict?

Goal: Minimize #main memory fetches
Optimal Caching

Farthest-First (FF) Schedule: Evict an item when needed. Evict the element which is accessed farthest down in the future.

Theorem: The FF algorithm minimizes #fetches
Optimal Caching

Farthest-First (FF) Schedule: Evict an item when needed. Evict the element which is accessed farthest down in the future

Theorem: The FF algorithm minimizes #fetches
Optimal Caching

Farthest-First (FF) Schedule: Evict an item when needed. Evict the element which is accessed farthest down in the future.

Theorem: The FF algorithm minimizes number of fetches.

<table>
<thead>
<tr>
<th>M</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>b</th>
<th>c</th>
<th>b</th>
<th>a</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>a</td>
<td>a</td>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>-</td>
<td>-</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Memory Access Sequence

Cache Contents

Evicted items
Optimal Caching

Farthest-First (FF) Schedule: Evict an item when needed. Evict the element which is accessed farthest down in the future.

Theorem: The FF algorithm minimizes #fetches
Optimal Caching

Farthest-First (FF) Schedule: Evict an item when needed. Evict the element which is accessed farthest down in the future.

Theorem: The FF algorithm minimizes #fetches
Optimal Caching

Farthest-First (FF) Schedule: Evict an item when needed. Evict the element which is accessed farthest down in the future.

Theorem: The FF algorithm minimizes #fetches
Optimal Caching

Farthest-First (FF) Schedule: Evict an item when needed. Evict the element which is accessed farthest down in the future.

Theorem: The FF algorithm minimizes #fetches.
Optimal Caching

Farthest-First (FF) Schedule: Evict an item when needed. Evict the element which is accessed farthest down in the future.

Theorem: The FF algorithm minimizes #fetches.
Caching: Reduced Schedule

An eviction schedule is **reduced** if it fetches an item \(x \) only when it is accessed.

Fact: For any \(S \), there is a reduced schedule \(S^* \) which makes at most as many fetches as \(S \).
Caching: Reduced Schedule

An eviction schedule is **reduced** if it fetches an item x only when it is accessed.

Fact: For any S, there is a reduced schedule S^* with at most as many fetches as S.

To convert S to S^*: Be lazy!
Caching: FF Schedules

Theorem: Suppose a reduced schedule S_j makes the same decisions as SFF from $t=1$ to $t=j$. Then, there exists a reduced schedule S_{j+1} s.t:
1. S_{j+1} makes **same decision** as SFF from $t=1$ to $t=j+1$
2. $\#fetches(S_{j+1}) \leq \#fetches(S_j)$

![Diagram](image)
Theorem: Suppose a reduced schedule S_j makes the same decisions as SFF from $t=1$ to $t=j$. Then, there exists a reduced schedule S_{j+1} s.t:
1. S_{j+1} makes **same decision** as SFF from $t=1$ to $t=j+1$
2. $\#\text{fetches}(S_{j+1}) \leq \#\text{fetches}(S_j)$

Case 1: No cache miss at $t=j+1$. $S_{j+1} = S_j$
Caching: FF Schedules

Theorem: Suppose a reduced schedule S_j makes the same decisions as SFF from $t=1$ to $t=j$. Then, there exists a reduced schedule S_{j+1} s.t:

1. S_{j+1} makes **same decision** as SFF from $t=1$ to $t=j+1$
2. $\#fetches(S_{j+1}) \leq \#fetches(S_j)$

Case 2: Cache miss at $t=j+1$, S_j and SFF evict same item. $S_{j+1} = S_j$
Theorem: Suppose a reduced schedule S_j makes the same decisions as SFF from $t=1$ to $t=j$. Then, there exists a reduced schedule S_{j+1} s.t:
1. S_{j+1} makes **same decision** as SFF from $t=1$ to $t=j+1$
2. $\#fetches(S_{j+1}) \leq \#fetches(S_j)$

Case 3a: Cache miss at $t=j+1$. S_j evicts a, SFF evicts b. S_{j+1} also evicts b. Next there is a request to d, and S_j evicts b. Make S_{j+1} evict a, bring in d.
Caching: FF Schedules

Theorem: Suppose a reduced schedule S_j makes the same decisions as SFF from $t=1$ to $t=j$. Then, there exists a reduced schedule S_{j+1} s.t:
1. S_{j+1} makes **same decision** as SFF from $t=1$ to $t=j+1$
2. $\#\text{fetches}(S_{j+1}) \leq \#\text{fetches}(S_j)$

Case 3b: Cache miss at $t=j+1$. S_j evicts a, SFF evicts b. S_{j+1} also evicts b. Next there is a request to a, and S_j evicts b. S_{j+1} does nothing.
Theorem: Suppose a reduced schedule \(S_j \) makes the same decisions as SFF from \(t=1 \) to \(t=j \). Then, there exists a reduced schedule \(S_{j+1} \) s.t:
1. \(S_{j+1} \) makes **same decision** as SFF from \(t=1 \) to \(t=j+1 \)
2. \#fetches(\(S_{j+1} \)) <= \#fetches(\(S_j \))

Case 3c: Cache miss at \(t=j+1 \). \(S_j \) evicts a, SFF evicts b. \(S_{j+1} \) also evicts b. Next there is a request to a, and \(S_j \) evicts d. \(S_{j+1} \) evicts d and brings in b. Now convert \(S_{j+1} \) to the reduced version of this schedule.
Theorem: Suppose a reduced schedule S_j makes the same decisions as SFF from $t=1$ to $t=j$. Then, there exists a reduced schedule S_{j+1} s.t:
1. S_{j+1} makes same decision as SFF from $t=1$ to $t=j+1$
2. $\#\text{fetches}(S_{j+1}) \leq \#\text{fetches}(S_j)$

Case 3d: Cache miss at $t=j+1$. S_j evicts a, SFF evicts b. S_{j+1} also evicts b
Next there is a request to b. **Cannot happen** as a is accessed before b!
Summary: Optimal Caching

Theorem: Suppose a reduced schedule S_j makes the same decisions as SFF from $t=1$ to $t=j$. Then, there exists a reduced schedule S_{j+1} s.t:
1. S_{j+1} makes **same decision** as SFF from $t=1$ to $t=j+1$
2. $\# \text{fetches}(S_{j+1}) \leq \# \text{fetches}(S_j)$

Case 1: No cache miss at $t=j+1$. $S_{j+1} = S_j$

Case 2: Cache miss at $t=j+1$, S_j and SFF evict same item. $S_{j+1} = S_j$

Case 3a: Cache miss at $t=j+1$. S_j evicts a, SFF evicts b. S_{j+1} also evicts b. Next there is a request to d, and S_j evicts b. Make S_{j+1} evict a, bring in d.

Case 3b: Cache miss at $t=j+1$. S_j evicts a, SFF evicts b. S_{j+1} also evicts b. Next there is a request to a, and S_j evicts b. S_{j+1} does nothing.

Case 3c: Cache miss at $t=j+1$. S_j evicts a, SFF evicts b. S_{j+1} also evicts b. Next there is a request to a, and S_j evicts d. S_{j+1} evicts d and brings in b. Now convert S_{j+1} to the reduced version of this schedule.

Case 3d: Cache miss at $t=j+1$. S_j evicts a, SFF evicts b. S_{j+1} also evicts b. Next there is a request to b. **Cannot happen** as a is accessed before b!
Theorem: Suppose a reduced schedule S_j makes the same decisions as SFF from $t=1$ to $t=j$. Then, there exists a reduced schedule S_{j+1} s.t:
1. S_{j+1} makes **same decision** as SFF from $t=1$ to $t=j+1$
2. $\#\text{fetches}(S_{j+1}) \leq \#\text{fetches}(S_j)$

Suppose you claim a magic schedule schedule S_M makes less fetches than SFF Then, we can construct a sequence of schedules:
- $S_M = S_0, S_1, S_2, ..., S_n = SFF$ such that:
 (1) S_j agrees with SFF from $t=1$ to $t = j$
 (2) $\#\text{fetches}(S_{j+1}) \leq \#\text{fetches}(S_j)$

What does this say about $\#\text{fetches}(SFF)$ relative to $\#\text{fetches}(S_M)$?
Greedy Algorithms

- Direct argument - MST
- Exchange argument - Caching
- Greedy approximation algorithms
Greedy Approximation Algorithms

- k-Center
- Set Cover
Approximation Algorithms

• Optimization problems, eg, MST, Shortest paths
• For an instance I, let:
 • $A(I) = \text{value of solution by algorithm } A$
 • $OPT(I) = \text{value of optimal solution}$
• Approximation ratio(A) = $\max_I A(I)/OPT(I)$
• A is an approx. algorithm if approx-ratio(A) is bounded