CSE 202: Design and Analysis of Algorithms

Lecture 18

Instructor: Kamalika Chaudhuri
Announcements

• No TA Office Hours on Thu May 26

• Extra Instructor Office Hours Thu May 26 5-6pm (instead of 2:30-3:30pm), CSE 4110

• No class on Monday May 30 (Memorial Day)

• Extra Instructor Office Hours Tue May 31 5-6pm at CSE 4110

• TA Office Hours on Tue May 31 moved to Wed Jun 1, 11-12, B250A

• Pick up graded Homework 3 after class
Randomized Algorithms

- Contention Resolution
- Some Facts about Random Variables
- Global Minimum Cut Algorithm
- Randomized Selection and Sorting
- Max 3-SAT
- Three Concentration Inequalities
- Hashing and Balls and Bins
Hashing and Balls-n-Bins

Problem: Given a large set S of elements x_1, \ldots, x_n, store them using $O(n)$ space s.t it is easy to determine whether a query item q is in S or not

<table>
<thead>
<tr>
<th>Table</th>
<th>Linked list of all x_i s.t $h(x_i) = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td></td>
</tr>
</tbody>
</table>

Popular Data Structure: A Hash table
Hashing and Balls-n-Bins

Problem: Given a large set S of elements $x_1, .., x_n$, store them using $O(n)$ space s.t it is easy to determine whether a query item q is in S or not

![Table with links](image)

Table

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Linked list of all x_i s.t $h(x_i) = 2$

Popular Data Structure: A Hash table

Algorithm:

1. Pick a completely random function $h : U \rightarrow \{1, \ldots, n\}$
2. Create a table of size n, initialize it to null
3. Store x_i in the linked list at position $h(x_i)$ of table
Problem: Given a large set S of elements x_1, \ldots, x_n, store them using $O(n)$ space s.t it is easy to determine whether a query item q is in S or not

Popular Data Structure: A Hash table

Algorithm:
1. Pick a completely random function $h : \mathcal{U} \rightarrow \{1, \ldots, n\}$
2. Create a table of size n, initialize it to null
3. Store x_i in the linked list at position $h(x_i)$ of table
4. For a query q, look at the linked list at location $h(q)$ of table to see if q is there
Hashing and Balls-n-Bins

Problem: Given a large set S of elements x_1, \ldots, x_n, store them using $O(n)$ space s.t it is easy to determine whether a query item q is in S or not.

Popular Data Structure: A Hash table

Algorithm:
1. Pick a completely random function $h : \mathcal{U} \rightarrow \{1, \ldots, n\}$
2. Create a table of size n, initialize it to null
3. Store x_i in the linked list at position $h(x_i)$ of table
4. For a query q, look at the linked list at location $h(q)$ of table to see if q is there

What is the query time of the algorithm?
Hashing and Balls-n-Bins

Problem: Given a large set S of elements $x_1, .., x_n$, store them using $O(n)$ space s.t it is easy to determine whether a query item q is in S or not

<table>
<thead>
<tr>
<th>Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>n</td>
</tr>
</tbody>
</table>

Algorithm:
1. Pick a completely random function h
2. Create a table of size n, initialize it to null
3. Store x_i in the linked list at position $h(x_i)$ of table
4. For a query q, check the linked list at location $h(q)$

Average Query Time: Suppose q is picked at random s.t it is equally likely to hash to 1, .., n. What is the expected query time?
Hashing and Balls-n-Bins

Problem: Given a large set S of elements x_1, \ldots, x_n, store them using $O(n)$ space s.t it is easy to determine whether a query item q is in S or not.

Algorithm:
1. Pick a completely random function h
2. Create a table of size n, initialize it to null
3. Store x_i in the linked list at position $h(x_i)$ of table
4. For a query q, check the linked list at location $h(q)$

Average Query Time: Suppose q is picked at random s.t it is equally likely to hash to $1, \ldots, n$. What is the expected query time?

$$\text{Expected Query Time} = \sum_{i=1}^{n} \Pr[q \text{ hashes to location } i] \cdot (\text{length of list at } T[i])$$
Hashing and Balls-n-Bins

Problem: Given a large set S of elements x_1, \ldots, x_n, store them using $O(n)$ space s.t it is easy to determine whether a query item q is in S or not.

Algorithm:
1. Pick a completely random function h
2. Create a table of size n, initialize it to null
3. Store x_i in the linked list at position $h(x_i)$ of table
4. For a query q, check the linked list at location $h(q)$

Average Query Time: Suppose q is picked at random s.t it is equally likely to hash to $1, \ldots, n$. What is the expected query time?

Expected Query Time

\[
E[q] = \sum_{i=1}^{n} Pr[q \text{ hashes to location } i] \cdot (\text{length of list at } T[i])
\]

\[
= \frac{1}{n} \sum_{i} \text{(length of list at } T[i])
\]
Hashing and Balls-n-Bins

Problem: Given a large set S of elements x_1, \ldots, x_n, store them using $O(n)$ space s.t it is easy to determine whether a query item q is in S or not

Algorithm:

1. Pick a completely random function h
2. Create a table of size n, initialize it to null
3. Store x_i in the linked list at position $h(x_i)$ of table
4. For a query q, check the linked list at location $h(q)$

Average Query Time: Suppose q is picked at random s.t it is equally likely to hash to $1, \ldots, n$. What is the expected query time?

Expected Query Time

$$
\text{Expected Query Time} = \sum_{i=1}^{n} \Pr[q \text{ hashes to location } i] \cdot (\text{length of list at } T[i])
$$

$$
= \frac{1}{n} \sum_{i} \text{(length of list at } T[i]) = \frac{1}{n} \cdot n = 1
$$
Problem: Given a large set \(S \) of elements \(x_1, \ldots, x_n \), store them using \(O(n) \) space s.t it is easy to determine whether a query item \(q \) is in \(S \) or not

Algorithm:
1. Pick a completely random function \(h \)
2. Create a table of size \(n \), initialize it to null
3. Store \(x_i \) in the linked list at position \(h(x_i) \) of table
4. For a query \(q \), check the linked list at location \(h(q) \)

Worst Case Query Time: For any \(q \), what is the query time? (with high probability over the choice of hash functions)
Hashing and Balls-n-Bins

Problem: Given a large set S of elements x_1, \ldots, x_n, store them using $O(n)$ space s.t it is easy to determine whether a query item q is in S or not.

Algorithm:
1. Pick a completely random function h
2. Create a table of size n, initialize it to null
3. Store x_i in the linked list at position $h(x_i)$ of table
4. For a query q, check the linked list at location $h(q)$

Worst Case Query Time: For any q, what is the query time? (with high probability over the choice of hash functions)

Equivalent to the following Balls and bins Problem:
Suppose we toss n balls u.a.r into n bins. What is the max #balls in a bin with high probability?

With high probability (w.h.p) = With probability $1 - 1/poly(n)$
Balls and Bins, again

Suppose we toss n balls u.a.r into n bins. What is the max load of a bin with high probability?

Some Facts:
Balls and Bins, again

Suppose we toss n balls u.a.r into n bins. What is the max load of a bin with high probability?

Some Facts:

1. The expected load of each bin is 1
2. What is the probability that each bin has load 1?
Suppose we toss n balls u.a.r into n bins. What is the max load of a bin with high probability?

Some Facts:

1. The expected load of each bin is 1

2. What is the probability that each bin has load 1?

\[
\text{Probability} = \frac{\# \text{ permutations}}{\# \text{ ways of tossing } n \text{ balls to } n \text{ bins}} = \frac{n!}{n^n}
\]
Balls and Bins, again

Suppose we toss \(n \) balls u.a.r into \(n \) bins. What is the max load of a bin with high probability?

Some Facts:

1. The expected load of each bin is 1

2. What is the probability that each bin has load 1?

\[
\text{Probability} = \frac{\# \text{ permutations}}{\# \text{ ways of tossing } n \text{ balls to } n \text{ bins}} = \frac{n!}{n^n}
\]

3. What is the expected \#empty bins?
Balls and Bins, again

Suppose we toss \(n \) balls u.a.r into \(n \) bins. What is the max load of a bin with high probability?

Some Facts:

1. The expected load of each bin is 1

2. What is the probability that each bin has load 1?

\[
\text{Probability} = \frac{\# \text{ permutations}}{\# \text{ ways of tossing } n \text{ balls to } n \text{ bins}} = \frac{n!}{n^n}
\]

3. What is the expected \#empty bins?

\[
\text{Pr}[\text{Bin } i \text{ is empty}] = \left(1 - \frac{1}{n}\right)^n
\]
Balls and Bins, again

Suppose we toss \(n \) balls u.a.r into \(n \) bins. What is the max load of a bin with high probability?

Some Facts:

1. The expected load of each bin is 1

2. What is the probability that each bin has load 1?

\[
\text{Probability} = \frac{\# \text{ permutations}}{\# \text{ ways of tossing } n \text{ balls to } n \text{ bins}} = \frac{n!}{n^n}
\]

3. What is the expected \# empty bins?

\[
\Pr[\text{Bin } i \text{ is empty}] = \left(1 - \frac{1}{n}\right)^n
\]

\[
E[\# \text{ empty bins}] = n \left(1 - \frac{1}{n}\right)^n = \Theta(n)
\]
Balls and Bins, again

Suppose we toss n balls u.a.r into n bins. What is the max load of a bin with high probability?

Some Facts:

1. The expected load of each bin is 1

2. What is the probability that each bin has load 1?

 $$\text{Probability} = \frac{\text{# permutations}}{\text{# ways of tossing } n \text{ balls to } n \text{ bins}} = \frac{n!}{n^n}$$

3. What is the expected #empty bins?

 $$\text{Pr[Bin } i \text{ is empty]} = \left(1 - \frac{1}{n}\right)^n$$

 $$E[\# \text{ empty bins}] = n \left(1 - \frac{1}{n}\right)^n = \Theta(n) \quad (\text{for } n \geq 2)$$
Balls and Bins

Suppose we toss n balls u.a.r into n bins. What is the max load of a bin with high probability?

Let $X_i = \#\text{balls in bin } i$
Balls and Bins

Suppose we toss n balls u.a.r into n bins. What is the max load of a bin with high probability?

Let $X_i = \#\text{balls in bin } i$

$$\Pr(X_i \geq t) \leq \binom{n}{t} \frac{1}{n^t}$$
Balls and Bins

Suppose we toss n balls u.a.r into n bins. What is the max load of a bin with high probability?

Let $X_i =$ #balls in bin i

$$\Pr(X_i \geq t) \leq \binom{n}{t} \frac{1}{n^t} \leq \left(\frac{ne}{t} \right)^t \frac{1}{n^t}$$

From Fact

Fact: If $n \geq k$

$$\left(\frac{n}{k} \right)^k \leq \binom{n}{k} \leq \left(\frac{ne}{k} \right)^k$$
Balls and Bins

Suppose we toss n balls u.a.r into n bins. What is the max load of a bin with high probability?

Let $X_i =$ #balls in bin i

$$\Pr(X_i \geq t) \leq \left(\frac{n}{t}\right)^{1-n^t} \leq \left(\frac{ne}{t}\right)^{t} \frac{1}{n^t} \leq \left(\frac{e}{t}\right)^t$$

From **Fact**

Fact: If $n \geq k$

$$\left(\frac{n}{k}\right)^k \leq \left(\frac{n}{k}\right) \leq \left(\frac{ne}{k}\right)^k$$
Balls and Bins

Suppose we toss n balls u.a.r into n bins. What is the max load of a bin with high probability?

Let $X_i = \# \text{balls in bin } i$

$$
\Pr(X_i \geq t) \leq \binom{n}{t} \frac{1}{n^t} \leq \left(\frac{ne}{t} \right)^t \frac{1}{n^t} \leq \left(\frac{e}{t} \right)^t \leq \frac{1}{n^2}
$$

From **Fact**

Would like this for whp condition

Fact: If $n \geq k$

$$
\left(\frac{n}{k} \right)^k \leq \binom{n}{k} \leq \left(\frac{ne}{k} \right)^k
$$
Suppose we toss n balls u.a.r into n bins. What is the max load of a bin with high probability?

Let $X_i = \#\text{balls in bin } i$

$$\Pr(X_i \geq t) \leq \binom{n}{t} \frac{1}{n^t} \leq \left(\frac{ne}{t}\right)^t \frac{1}{n^t} \leq \left(\frac{e}{t}\right)^t \leq \frac{1}{n^2}$$

Fact: If $n \geq k$

$$\binom{n}{k} \leq \binom{n}{k} \leq \left(\frac{ne}{k}\right)^k$$

Let $t = \frac{c \log n}{\log \log n}$ for constant c
Balls and Bins

Suppose we toss n balls u.a.r into n bins. What is the max load of a bin with high probability?

Let X_i = #balls in bin i

$$\Pr(X_i \geq t) \leq \left(\frac{n}{t}\right) \frac{1}{n^t} \leq \left(\frac{ne}{t}\right)^t \frac{1}{n^t} \leq \left(\frac{e}{t}\right)^t \leq \frac{1}{n^2}$$

From Fact

Would like this for whp condition

Fact: If $n \geq k$

$$(\frac{n}{k})^k \leq \left(\frac{n}{k}\right) \leq \left(\frac{ne}{k}\right)^k$$

Let $t = \frac{c \log n}{\log \log n}$ for constant c

$$\log \left(\frac{t}{e}\right)^t = t \log t - t$$
Balls and Bins

Suppose we toss n balls u.a.r into n bins. What is the max load of a bin with high probability?

Let $X_i =$ #balls in bin i

\[
\Pr(X_i \geq t) \leq \left(\frac{n}{t} \right)^{\frac{1}{n^t}} \leq \left(\frac{ne}{t} \right)^{t} \frac{1}{n^t} \leq \left(\frac{e}{t} \right)^{t} \leq \frac{1}{n^2}
\]

From Fact Would like this for whp condition

Let $t = \frac{c \log n}{\log \log n}$ for constant c

\[
\log \left(\frac{t}{e} \right)^{t} = t \log t - t = \frac{c \log n}{\log \log n} \cdot (\log c + \log \log n - \log \log \log n)
\]

Fact: If $n \geq k$

\[
\left(\frac{n}{k} \right)^{k} \leq \left(\frac{n}{k} \right) \leq \left(\frac{ne}{k} \right)^{k}
\]
Suppose we toss n balls u.a.r into n bins. What is the max load of a bin with high probability?

Let $X_i = \#\text{balls in bin } i$

$$\Pr(X_i \geq t) \leq \binom{n}{t} \frac{1}{n^t} \leq \left(\frac{ne}{t}\right)^t \frac{1}{n^t} \leq \left(\frac{e}{t}\right)^t \leq \frac{1}{n^2}$$

From Fact: If $n \geq k$

$$\left(\frac{n}{k}\right)^k \leq \binom{n}{k} \leq \left(\frac{ne}{k}\right)^k$$

Would like this for whp condition

Let $t = \frac{c \log n}{\log \log n}$ for constant c

$$\log \left(\frac{t}{e}\right)^t = t \log t - t = \frac{c \log n}{\log \log n} \cdot (\log c + \log \log n - \log \log \log n)$$

For large n, this is

$$\geq \frac{1}{2} \log \log n$$
Suppose we toss n balls u.a.r into n bins. What is the max load of a bin with high probability?

Let $X_i = \#\text{balls in bin } i$

$$\Pr(X_i \geq t) \leq \left(\frac{n}{t}\right) \frac{1}{n^t} \leq \left(\frac{ne}{t}\right) \frac{1}{n^t} \leq \left(\frac{e}{t}\right)^t \leq \frac{1}{n^2}$$

From Fact

Let $t = \frac{c \log n}{\log \log n}$ for constant c

$$\log \left(\frac{t}{e}\right)^t = t \log t - t = \frac{c \log n}{\log \log n} \cdot (\log c + \log \log n - \log \log \log n)$$

$$\geq \frac{c}{2} \log n$$

Fact: If $n \geq k$

$$\left(\frac{n}{k}\right)^k \leq \binom{n}{k} \leq \left(\frac{ne}{k}\right)^k$$

For large n, this is

$$\geq \frac{1}{2} \log \log n$$
Balls and Bins

Suppose we toss \(n \) balls u.a.r into \(n \) bins. What is the max load of a bin with high probability?

Let \(X_i = \#\text{balls in bin } i \)

\[
\Pr(X_i \geq t) \leq \left(\frac{n}{t} \right)^{\frac{1}{t}} \leq \left(\frac{ne}{t} \right)^{\frac{1}{t}} \leq \left(\frac{e}{t} \right)^{\frac{1}{t}} \leq \frac{1}{n^2}
\]

From Fact

Would like this for whp condition

Fact: If \(n \geq k \)

\[
\left(\frac{n}{k} \right)^{k} \leq \left(\frac{n}{k} \right) \leq \left(\frac{ne}{k} \right)^{k}
\]

Let \(t = \frac{c \log n}{\log \log n} \) for constant \(c \)

\[
\log \left(\frac{t}{e} \right)^{t} = t \log t - t = \frac{c \log n}{\log \log n} \cdot \left(\log c + \log \log n - \log \log \log n \right)
\]

\[
\geq \frac{c}{2} \log n \geq 2 \log n, \text{ for } c \geq 4
\]

For large \(n \), this is

\[
\geq \frac{1}{2} \log \log n
\]
Balls and Bins

Suppose we toss n balls u.a.r into n bins. What is the max load of a bin with high probability?

Let $X_i = \#\text{balls in bin } i$

$$\Pr(X_i \geq t) \leq \left(\frac{n}{t}\right)^{1/n} \leq \left(\frac{ne}{t}\right)^{t} \leq t \leq \frac{1}{n^2}$$

From Fact: $$(\frac{n}{k})^k \leq \left(\frac{n}{k}\right) \leq \left(\frac{ne}{k}\right)^k$$

Let $t = \frac{c \log n}{\log \log n}$ for constant c

$$\log \left(\frac{t}{e}\right)^t = t \log t - t = \frac{c \log n}{\log \log n} \cdot (c \log c + \log \log n - \log \log \log n) \geq \frac{c}{2} \log n \geq 2 \log n, \text{ for } c \geq 4$$

For large n, this is

$$\geq \frac{1}{2} \log \log n$$

Therefore, w.p. $1/n^2$, there are at least t balls in Bin i. What is $\Pr(\text{All bins have } \leq t \text{ balls})$?
Suppose we toss n balls u.a.r into n bins. What is the max load of a bin with high probability?

Let $X_i = \#\text{balls in bin } i$

$$\Pr(X_i \geq t) \leq \left(\frac{n}{t}\right)^{t} \leq \left(\frac{ne}{t}\right)^{t} \leq \left(\frac{e}{t}\right)^{t} \leq \frac{1}{n^2}$$

From Fact: If $n \geq k$

$$\left(\frac{n}{k}\right)^{k} \leq \left(\frac{n}{k}\right) \leq \left(\frac{ne}{k}\right)$$

Let $t = \frac{c \log n}{\log \log n}$ for constant c

$$\log \left(\frac{t}{e}\right)^{t} = t \log t - t = \frac{c \log n}{\log \log n} \cdot (\log c + \log \log n - \log \log \log n) \geq \frac{c}{2} \log n \geq 2 \log n, \text{ for } c \geq 4$$

For large n, this is

$$\geq \frac{1}{2} \log \log n$$

Therefore, w.p. $1/n^2$, there are at least t balls in Bin i. What is $\Pr(\text{All bins have } \leq t \text{ balls})$?

Applying Union Bound, $\Pr(\text{All bins have } \leq t \text{ balls}) \geq 1 - 1/n$
Suppose we toss \(n \) balls u.a.r into \(n \) bins. What is the max load of a bin with high probability?

Fact: W.p. \(1 - 1/n \), the maximum load of each bin is at most \(O(\log n / \log \log n) \)

Fact: The max loaded bin has \(\left(\log n / 3 \log \log n \right) \) balls with probability at least \(1 - \text{const.} / n^{(1/3)} \)
Suppose we toss n balls u.a.r into n bins. What is the max load of a bin with high probability?

Fact: W.p. $1 - 1/n$, the maximum load of each bin is at most $O(\log n / \log \log n)$

Fact: The max loaded bin has $(\log n / 3 \log \log n)$ balls with probability at least $1 - \text{const.}/n^{(1/3)}$

Let $X_i = \#\text{balls in bin } i$
Balls and Bins

Suppose we toss \(n \) balls u.a.r into \(n \) bins. What is the max load of a bin with high probability?

Fact: W.p. 1-1/n, the maximum load of each bin is at most \(O(\log n / \log \log n) \)

Fact: The max loaded bin has \((\log n / 3 \log \log n) \) balls with probability at least 1 - const./\(n^{(1/3)} \)

Let \(X_i = \# \text{balls in bin } i \)

\[
\Pr(X_i \geq t) \geq \binom{n}{t} \frac{1}{n^t} \left(1 - \frac{1}{n}\right)^{n-t}
\]
Balls and Bins

Suppose we toss \(n \) balls u.a.r into \(n \) bins. What is the max load of a bin with high probability?

Fact: W.p. 1-1/n, the maximum load of each bin is at most \(O(\log n / \log \log n) \)

Fact: The max loaded bin has \((\log n / 3 \log \log n) \) balls with probability at least 1 - const./\(n^{(1/3)} \)

Let \(X_i = \# \text{balls in bin i} \)

\[
\Pr(X_i \geq t) \geq \binom{n}{t} \left(\frac{1}{n} \right)^t \left(1 - \frac{1}{n} \right)^{n-t} \geq \left(\frac{n}{t} \right)^t \cdot \frac{1}{n^t} \cdot e^{-1}
\]
Balls and Bins

Suppose we toss \(n \) balls u.a.r into \(n \) bins. What is the max load of a bin with high probability?

Fact: W.p. \(1 - 1/n \), the maximum load of each bin is at most \(O(\log n / \log \log n) \)

Fact: The max loaded bin has \((\log n/3 \log \log n) \) balls with probability at least \(1 - \text{const.} / n^{(1/3)} \)

Let \(X_i = \# \text{balls in bin } i \)

\[
\Pr(X_i \geq t) \geq \binom{n}{t} \frac{1}{n^t} \left(1 - \frac{1}{n}\right)^{n-t} \geq \left(\frac{n}{t}\right)^t \cdot \frac{1}{n^t} \cdot e^{-1} \geq \frac{1}{et^t}
\]
Suppose we toss n balls u.a.r into n bins. What is the max load of a bin with high probability?

Fact: W.p. $1 - 1/n$, the maximum load of each bin is at most $O(\log n / \log \log n)$

Fact: The max loaded bin has $(\log n / 3 \log \log n)$ balls with probability at least $1 - \text{const.}/n^{1/3}$

Let $X_i = \#\text{balls in bin } i$

$$\Pr(X_i \geq t) \geq \binom{n}{t} \frac{1}{n^t} \left(1 - \frac{1}{n}\right)^{n-t} \geq \left(\frac{n}{t}\right)^t \cdot \frac{1}{n^t} \cdot e^{-1} \geq \frac{1}{et^t}$$

At least $1/en^{1/3}$ for $t = \log n/3 \log \log n$
Balls and Bins

Suppose we toss \(n \) balls u.a.r into \(n \) bins. What is the max load of a bin with high probability?

Fact: W.p. \(1-1/n \), the maximum load of each bin is at most \(O(\log n/\log \log n) \)

Fact: The max loaded bin has \((\log n/3\log \log n) \) balls with probability at least \(1 - \text{const.}/n^{(1/3)} \)

Let \(X_i = \# \text{balls in bin } i \)

\[
\Pr(X_i \geq t) \geq \binom{n}{t} \frac{1}{n^t} \left(1 - \frac{1}{n}\right)^{n-t} \geq \left(\frac{n}{t}\right)^t \cdot \frac{1}{n^t} \cdot e^{-1} \geq \frac{1}{e^{t^2}}
\]

At least \(1/en^{1/3} \) for \(t = \log n/3 \log \log n \)

Let \(Y_i = 1 \) if bin \(i \) has load \(t \) or more,
= 0 otherwise

\[Y = Y_1 + Y_2 + .. + Y_n \]
Balls and Bins

Suppose we toss n balls u.a.r into n bins. What is the max load of a bin with high probability?

Fact: W.p. 1 - 1/n, the maximum load of each bin is at most O(log n/log log n)

Fact: The max loaded bin has (log n/3log log n) balls with probability at least 1 - const./n^{(1/3)}

Let X_i = #balls in bin i

$$\Pr(X_i \geq t) \geq \binom{n}{t} \frac{1}{n^t} \left(1 - \frac{1}{n}\right)^{n-t} \geq \left(\frac{n}{t}\right)^t \cdot \frac{1}{n^t} \cdot e^{-1} \geq \frac{1}{et^t}$$

At least $1/en^{1/3}$ for $t = \log n/3 \log \log n$

Let $Y_i = 1$ if bin i has load t or more, = 0 otherwise

$$Y = Y_1 + Y_2 + .. + Y_n$$

$$\Pr(Y_i = 1) \geq 1/en^{1/3}$$
Balls and Bins

Suppose we toss n balls u.a.r into n bins. What is the max load of a bin with high probability?

Fact: W.p. $1 - 1/n$, the maximum load of each bin is at most $O(\log n/\log \log n)$

Fact: The max loaded bin has $(\log n/3\log \log n)$ balls with probability at least $1 - \text{const.}/n^{(1/3)}$

Let $X_i = \#\text{balls in bin } i$

$$\Pr(X_i \geq t) \geq \binom{n}{t} \frac{1}{n^t} \left(1 - \frac{1}{n}\right)^{n-t} \geq \left(\frac{n}{t}\right)^t \cdot \frac{1}{n^t} \cdot e^{-1} \geq \frac{1}{e t^t}$$

At least $1/en^{1/3}$ for $t = \log n/3 \log \log n$

Let $Y_i = 1$ if bin i has load t or more, $= 0$ otherwise

$$Y = Y_1 + Y_2 + \ldots + Y_n$$

$$\Pr(Y_i = 1) \geq 1/en^{1/3}$$

$$\mathbb{E}(Y) \geq n^{2/3}/e$$
Balls and Bins

Suppose we toss n balls u.a.r into n bins. What is the max load of a bin with high probability?

Fact: W.p. $1 - 1/n$, the maximum load of each bin is at most $O(\log n / \log \log n)$

Let $X_i = \#balls$ in bin i

$$\Pr(X_i \geq t) \geq \left(\frac{n}{t} \right) \left(1 - \frac{1}{n} \right)^{n-t} \geq \left(\frac{n}{t} \right)^t \cdot \frac{1}{n^t} \cdot e^{-1} \geq \frac{1}{e^t}$$

At least $1/e^{t}$ for $t = \log n / 3 \log \log n$

Let $Y_i = 1$ if bin i has load t or more, $= 0$ otherwise

$Y = Y_1 + Y_2 + \ldots + Y_n$

$$\Pr(Y_i = 1) \geq 1/e^{t}$$

$E(Y) \geq n^{2/3} / e$

$$\Pr(Y = 0) = \Pr(\text{No bin has load } t \text{ or more}) \leq \Pr(|Y - E[Y]| \geq E[Y])$$

Which concentration bound to use?
Balls and Bins

Suppose we toss n balls u.a.r into n bins. What is the max load of a bin with high probability?

Fact: W.p. $1 - 1/n$, the maximum load of each bin is at most $O(\log n/\log \log n)$

Fact: The max loaded bin has $(\log n/3\log \log n)$ balls with probability at least $1 - \text{const.}/n^{(1/3)}$

Let $X_i = \text{#balls in bin } i$

$$
\Pr(X_i \geq t) \geq \left(\frac{n}{t} \right)^{n-t} \left(1 - \frac{1}{n} \right)^{n-t} \geq \left(\frac{n}{t} \right)^{t} \cdot \frac{1}{n^t} \cdot e^{-1} \geq \frac{1}{et^t}
$$

At least $1/en^{1/3}$ for $t = \log n/3\log \log n$

Let $Y_i = 1$ if bin i has load t or more, $= 0$ otherwise

$Y = Y_1 + Y_2 + .. + Y_n$

$\Pr(Y = 0) = \Pr(\text{No bin has load } t \text{ or more}) \leq \Pr(|Y - E[Y]| \geq E[Y])$

Using Chebyshev, $\Pr(|Y - E[Y]| \geq E[Y]) \leq \frac{\text{Var}(Y)}{E(Y)^2}$

Which concentration bound to use?
Balls and Bins

Suppose we toss \(n \) balls u.a.r into \(n \) bins. What is the max load of a bin with high probability?

Fact: W.p. \(1 - 1/n \), the maximum load of each bin is at most \(O(\log n / \log \log n) \)

Fact: The max loaded bin has \((\log n / 3 \log \log n) \) balls with probability at least \(1 - \text{const.}/n^{(1/3)} \)

Let \(Y_i = 1 \) if bin \(i \) has load \(t \) or more,

\[
\begin{align*}
= 0 & \text{ otherwise} \\
Y &= Y_1 + Y_2 + \ldots + Y_n
\end{align*}
\]

\[
\Pr(Y_i = 1) \geq 1/en^{1/3}
\]

\[
\Pr(Y = 0) = \Pr(\text{No bin has load } \geq t) \leq \Pr(|Y - E[Y]| \geq E[Y]) \leq \frac{\text{Var}(Y)}{E(Y)^2}
\]

Chebyshev
Balls and Bins

Suppose we toss n balls u.a.r into n bins. What is the max load of a bin with high probability?

Fact: W.p. $1 - 1/n$, the maximum load of each bin is at most $O(\log n/\log \log n)$

Fact: The max loaded bin has $(\log n/3\log \log n)$ balls with probability at least $1 - \text{const.}/n^{(1/3)}$

Let $Y_i = 1$ if bin i has load t or more, $= 0$ otherwise.

$Y = Y_1 + Y_2 + \ldots + Y_n$

$\Pr(Y_i = 1) \geq 1/\text{en}^{1/3}$

$E(Y) \geq n^{2/3}/e$

$\Pr(Y = 0) = \Pr(\text{No bin has load } \geq t) \leq \Pr(|Y - E[Y]| \geq E[Y]) \leq \text{Var}(Y)/E(Y)^2$ (Chebyshev)

$\text{Var}[Y] = \text{Var}[(Y_1 + \ldots + Y_n)^2]$ =
Suppose we toss n balls u.a.r into n bins. What is the max load of a bin with high probability?

Fact: W.p. $1 - 1/n$, the maximum load of each bin is at most $O(\log n / \log \log n)$

Fact: The max loaded bin has $(\log n / 3 \log \log n)$ balls with probability at least $1 - \text{const.} / n^{(1/3)}$

Let $Y_i = 1$ if bin i has load t or more, $= 0$ otherwise

$Y = Y_1 + Y_2 + .. + Y_n$

$Pr(Y_i = 1) \geq 1/en^{1/3}$

$E(Y) \geq n^{2/3} / e$

$Pr(Y = 0) = Pr(\text{No bin has load} \geq t) \leq Pr(|Y - E[Y]| \geq E[Y]) \leq \frac{\text{Var}(Y)}{E(Y)^2}$

$\text{Var}[Y] = \text{Var}((Y_1 + .. + Y_n)^2) = \sum_i \text{Var}(Y_i) + 2 \sum_{i \neq j} (E[Y_i Y_j] - E[Y_i] E[Y_j])$
Balls and Bins

Suppose we toss n balls u.a.r into n bins. What is the max load of a bin with high probability?

Fact: W.p. $1-1/n$, the maximum load of each bin is at most $O(\log n/\log \log n)$

Fact: The max loaded bin has $(\log n/3\log \log n)$ balls with probability at least $1 - \text{const.}/n^{(1/3)}$

Let $Y_i = 1$ if bin i has load t or more, $= 0$ otherwise

$Y = Y_1 + Y_2 + .. + Y_n$

$\Pr(Y = 0) = \Pr(\text{No bin has load } \geq t) \leq \Pr(|Y - E[Y]| \geq E[Y]) \leq \text{Var}(Y)/E(Y)^2$

$\text{Var}[Y] = \text{Var}[(Y_1 + .. + Y_n)^2] = \sum_i \text{Var}(Y_i) + 2 \sum_{i \neq j}(E[Y_iY_j] - E[Y_i]E[Y_j])$

Now if i is not j, Y_i and Y_j are negatively correlated, which means that $E[Y_iY_j] < E[Y_i]E[Y_j]$
Balls and Bins

Suppose we toss n balls u.a.r into n bins. What is the max load of a bin with high probability?

Fact: W.p. 1 - 1/n, the maximum load of each bin is at most $O(\log n / \log \log n)$

Fact: The max loaded bin has $(\log n / 3 \log \log n)$ balls with probability at least $1 - \text{const.}/n^{1/3}$

Let $Y_i = 1$ if bin i has load t or more, $= 0$ otherwise

$Y = Y_1 + Y_2 + .. + Y_n$

Pr($Y = 0$) = Pr(No bin has load $\geq t$) \leq Pr($|Y - E[Y]| \geq E[Y]$) \leq Var(Y)/$E(Y)^2$

$E(Y) \geq n^{2/3} / e$

Pr($Y_i = 1$) \geq $1/\text{en}^{1/3}$

Var[Y] = Var[(Y$_1$ + .. + Y$_n$)2] = \sum_i Var(Y_i) + 2 $\sum_{i \neq j}$ (E[$Y_i Y_j$] - E[Y_i]E[Y_j])

Now if i is not j, Y_i and Y_j are negatively correlated, which means that $E[Y_i Y_j] < E[Y_i] E[Y_j]$

Thus, $Var(Y) \leq \sum_{i=1}^{n} Var(Y_i) \leq n \cdot 1$
Balls and Bins

Suppose we toss n balls u.a.r into n bins. What is the max load of a bin with high probability?

Fact: W.p. $1 - 1/n$, the maximum load of each bin is at most $O(\log n / \log \log n)$

Fact: The max loaded bin has $(\log n / 3 \log \log n)$ balls with probability at least $1 - \text{const.} / n^{1/3}$

Let $Y_i = 1$ if bin i has load t or more,
= 0 otherwise

$Y = Y_1 + Y_2 + .. + Y_n$

Pr($Y_i = 1$) $\geq 1 / en^{1/3}$

$E(Y) \geq n^{2/3} / e$

Pr($Y = 0$) $= \Pr(\text{No bin has load } \geq t) \leq \Pr(|Y - E[Y]| \geq E[Y]) \leq \text{Var}(Y) / E(Y)^2$

$\text{Var}[Y] = \text{Var}[(Y_1 + .. + Y_n)^2] = \sum_i \text{Var}(Y_i) + 2 \sum_{i \neq j} (E[Y_iY_j] - E[Y_i]E[Y_j])$

Now if i is not j, Y_i and Y_j are negatively correlated, which means that $E[Y_iY_j] < E[Y_i]E[Y_j]$

Thus,

$\text{Var}(Y) \leq \sum_{i=1}^{n} \text{Var}(Y_i) \leq n \cdot 1$

Pr($Y = 0$) $\leq \frac{\text{Var}(Y)}{E(Y)^2} \leq \frac{ne^2}{n^{4/3}} \leq \frac{e^2}{n^{1/3}}$
Randomized Algorithms

- Contention Resolution
- Some Facts about Random Variables
- Global Minimum Cut Algorithm
- Randomized Selection and Sorting
- Max 3-SAT
- Three Concentration Inequalities
- Hashing and Balls and Bins
 - The Power of Two Choices
The Power of Two Choices

Problem: Given a large set S of elements x_1, \ldots, x_n, store them using $O(n)$ space s.t it is easy to determine whether a query item q is in S or not

![Diagram of a table with linked lists](image)

Algorithm:
1. Pick **two** completely random functions $h_1 : \mathcal{U} \rightarrow \{1, \ldots, n\}$, and $h_2 : \mathcal{U} \rightarrow \{1, \ldots, n\}$
2. Create a table of size n, initialize it to null
3. Store x_i at linked list at position $h_1(x_i)$ or $h_2(x_i)$, whichever is shorter
4. For a query q, look at the linked list at location $h_1(q)$ and $h_2(q)$ of table to see if q is there
The Power of Two Choices

Problem: Given a large set \(S \) of elements \(x_1, \ldots, x_n \), store them using \(O(n) \) space s.t it is easy to determine whether a query item \(q \) is in \(S \) or not.

<table>
<thead>
<tr>
<th>Table</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>...</th>
<th>n</th>
</tr>
</thead>
</table>

Linked list of all \(x_i \) s.t \(h(x_i) = 2 \)

Algorithm:
1. Pick **two** completely random functions \(h_1 : \mathcal{U} \rightarrow \{1, \ldots, n\} \), and \(h_2 : \mathcal{U} \rightarrow \{1, \ldots, n\} \)
2. Create a table of size \(n \), initialize it to null
3. Store \(x_i \) at linked list at position \(h_1(x_i) \) or \(h_2(x_i) \), whichever is shorter
4. For a query \(q \), look at the linked list at location \(h_1(q) \) and \(h_2(q) \) of table to see if \(q \) is there

Equivalent to the following Balls and Bins Problem: Toss \(n \) balls into \(n \) bins. For each ball, pick two bins u.a.r and put the ball into the lighter of the two bins.

What is the worst case query time?
Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = $O(\log \log n)$, w.p. $1 - 1/n$

We will prove this for the rest of class
Power of Two Choices

Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = $O(\log \log n)$, w.p. $1 - 1/n$
We will prove this for the rest of class

Main Idea (Not a formal Proof):

If a_i = fraction of bins with i or more balls, then, fraction of bins with $i+1$ or more balls is:
Power of Two Choices

Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = $O(\log \log n)$, w.p. $1 - 1/n$

We will prove this for the rest of class

Main Idea (Not a formal Proof):

If a_i = fraction of bins with i or more balls, then, fraction of bins with $i+1$ or more balls is:

$$a_{i+1} \approx a_i^2$$

(To put a ball in a bin with i or more balls, need to pick two such bins out of n)
Power of Two Choices

Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = $O(\log \log n)$, w.p. $1 - 1/n$

We will prove this for the rest of class.

Main Idea (Not a formal Proof):

If $a_i = \text{fraction of bins with } i \text{ or more balls}$, then, fraction of bins with $i+1$ or more balls is:

$a_{i+1} \approx a_i^2$ \hspace{1cm} (To put a ball in a bin with i or more balls, need to pick two such bins out of n)

$a_2 \leq \frac{1}{2}$ \hspace{1cm} $a_i \approx \frac{1}{2^{2i-1}} < \frac{1}{n^2}$ for $i = O(\log \log n)$
Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = $O(\log \log n)$, w.p. 1-$1/n$
We will prove this for the rest of class.

Main Idea (Not a formal Proof):
If $a_i =$ fraction of bins with i or more balls, then, fraction of bins with $i+1$ or more balls is:

$a_{i+1} \approx a_i^2$ (To put a ball in a bin with i or more balls, need to pick two such bins out of n)

$a_2 \leq \frac{1}{2}$ $a_i \approx \frac{1}{2^{2i-1}} < \frac{1}{n^2}$ for $i = O(\log \log n)$

Now we prove this formally. But what makes the proof hard?
Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = $O(\log \log n)$, w.p. $1 - 1/n$

Fact: Let $X_1..X_n$ be independent random variables (rv), $Y_1..Y_n$ be rv s.t Y_i depends on $X_1..X_{i-1}$

If $\Pr(Y_i = 1|X_1, \ldots, X_{i-1}) \leq p$, then $\Pr(\sum_{i=1}^{n} Y_i \geq k) \leq \Pr(Bin(n, p) \geq k)$
Toss \(n \) balls into \(n \) bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = \(O(\log \log n) \), w.p. \(1 - 1/n \)

Fact: Let \(X_1..X_n \) be independent random variables (rv), \(Y_1..Y_n \) be rv s.t \(Y_i \) depends on \(X_1..X_{i-1} \)
If \(\Pr(Y_i = 1|X_1, \ldots, X_{i-1}) \leq p \), then \(\Pr(\sum_{i=1}^{n} Y_i \geq k) \leq \Pr(Bin(n, p) \geq k) \)

Define: \(N_i = \# \)bins with load \(i \) or more
Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = $O(\log \log n)$, w.p. 1 - 1/n

Fact: Let X_1, X_n be independent random variables (rv), Y_1, Y_n be rv s.t Y_i depends on X_1, \ldots, X_{i-1}

If $\Pr(Y_i = 1 \mid X_1, \ldots, X_{i-1}) \leq p$, then

$$\Pr(\sum_{i=1}^{n} Y_i \geq k) \leq \Pr(\text{Bin}(n, p) \geq k)$$

Define: $N_i = \#\text{bins with load } i \text{ or more}$

Lemma 1: For any a,

$$\Pr(N_{i+1} > t \mid N_i \leq an) \leq \frac{\Pr(\text{Bin}(n, a^2) > t)}{\Pr(N_i \leq an)}$$
Power of Two Choices

Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin $= O(\log \log n)$, w.p. $1 - 1/n$

Fact: Let $X_1..X_n$ be independent random variables (rv), $Y_1..Y_n$ be rv s.t Y_i depends on $X_1..X_{i-1}$

If $\Pr(Y_i = 1 | X_1, \ldots, X_{i-1}) \leq p$, then $\Pr(\sum_{i=1}^{n} Y_i \geq k) \leq \Pr(Bin(n, p) \geq k)$

Define: $N_i = \#$bins with load i or more

Lemma 1: For any a, $\Pr(N_{i+1} > t | N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)}$

Proof: For any j, let $X_j = k$ if ball picks in bin k in a toss. Are X_js independent?
Power of Two Choices

Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = $O(\log \log n)$, w.p. 1-1/n

Fact: Let $X_1..X_n$ be independent random variables (rv), $Y_1..Y_n$ be rv s.t Y_i depends on $X_1..X_{i-1}$
If $\Pr(Y_i = 1|X_1, \ldots, X_{i-1}) \leq p$, then $\Pr(\sum_{i=1}^n Y_i \geq k) \leq \Pr(\text{Bin}(n, p) \geq k)$

Define: $N_i = \#$bins with load i or more

Lemma 1: For any a, $\Pr(N_i+1 > t|N_i \leq an) \leq \frac{\Pr(\text{Bin}(n, a^2) > t)}{\Pr(N_i \leq an)}$

Proof: For any j, let $X_j = k$ if ball picks in bin k in a toss. Are X_js independent?
Define: $Y_j = 1$ if (ball j lands in bin with current load $\geq i+1$) and (N_i at time j-1 $\leq an$) = 0 otherwise
Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = \(O(\log \log n) \), w.p. 1-1/n

Fact: Let \(X_1..X_n \) be independent random variables (rv), \(Y_1..Y_n \) be rv s.t. \(Y_i \) depends on \(X_1..X_{i-1} \)

If \(\Pr(Y_i = 1 | X_1, \ldots, X_{i-1}) \leq p \), then \(\Pr(\sum_{i=1}^{n} Y_i \geq k) \leq \Pr(Bin(n, p) \geq k) \)

Define: \(N_i = \) #bins with load i or more

Lemma 1: For any a, \(\Pr(N_{i+1} > t | N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)} \)

Proof: For any j, let \(X_j = k \) if ball picks in bin k in a toss. Are \(X_j \)s independent?

Define: \(Y_j = 1 \) if \((\text{ball j lands in bin with current load } \geq i+1) \) and \((N_i \text{ at time j-1 } \leq an) \) event A

= 0 otherwise event B
Power of Two Choices

Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = $O(\log \log n)$, w.p. 1 - 1/n

Fact: Let $X_1..X_n$ be independent random variables (rv), $Y_1..Y_n$ be rv s.t Y_i depends on $X_1..X_{i-1}$

If $\Pr(Y_i = 1|X_1, \ldots, X_{i-1}) \leq p$, then $\Pr(\sum_{i=1}^{n} Y_i \geq k) \leq \Pr(\text{Bin}(n, p) \geq k)$

Define: $N_i = \#\text{bins with load } i \text{ or more}$

Lemma 1: For any a, $\Pr(N_{i+1} > t|N_i \leq an) \leq \frac{\Pr(\text{Bin}(n, a^2) > t)}{\Pr(N_i \leq an)}$

Proof: For any j, let $X_j = k$ if ball picks in bin k in a toss. Are X_js independent?

Define: $Y_j = 1$ if (ball j lands in bin with current load $\geq i+1$) and (Ni at time j-1 $\leq an$)

= 0 otherwise
event A

Y_j depends on $X_1..X_{j-1}$.
Power of Two Choices

Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = $O(\log \log n)$, w.p. $1 - 1/n$

Fact: Let $X_1..X_n$ be independent random variables (rv), $Y_1..Y_n$ be rv s.t Y_i depends on $X_1..X_{i-1}$.
If $\Pr(Y_i = 1|X_1,\ldots,X_{i-1}) \leq p$, then $\Pr(\sum_{i=1}^{n} Y_i \geq k) \leq \Pr(Bin(n, p) \geq k)$

Define: $N_i = \#\text{bins with load } i \text{ or more}$

Lemma 1: For any a, $\Pr(N_{i+1} > t|N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)}$

Proof: For any j, let $X_j = k$ if ball picks in bin k in a toss. Are X_is independent?
Define: $Y_j = 1$ if (ball j lands in bin with current load $\geq i+1$) and (N_i at time $j-1$ $\leq an$)
= 0 otherwise

Y_j depends on $X_1..X_{j-1}$. $\Pr(Y_j = 1|X_1,..X_{j-1}) = \Pr(A, B)$
Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: The maximum load of a bin is $O(\log \log n)$, w.p. $1 - 1/n$.

Fact: Let X_1, X_2, \ldots, X_n be independent random variables (rv), Y_1, Y_2, \ldots, Y_n be rv s.t. Y_i depends on X_1, \ldots, X_{i-1}.

If $\Pr(Y_i = 1|X_1, \ldots, X_{i-1}) \leq p$, then $\Pr(\sum_{i=1}^{n} Y_i \geq k) \leq \Pr(\text{Bin}(n, p) \geq k)$.

Define: N_i = #bins with load i or more.

Lemma 1: For any a, $\Pr(N_{i+1} > t | N_i \leq an) \leq \frac{\Pr(\text{Bin}(n, a^2) > t)}{\Pr(N_i \leq an)}$.

Proof: For any j, let $X_j = k$ if ball picks in bin k in a toss. Are X_js independent?

Define: $Y_j = 1$ if (ball j lands in bin with current load $\geq i+1$) and (N_i at time $j-1 \leq an$) and (N_i at time $j-1 \leq an$) and \text{event A} = 0 otherwise \text{event B}

Y_j depends on X_1, \ldots, X_{j-1}.

$\Pr(Y_j = 1|X_1, \ldots, X_{j-1}) = \Pr(\text{A, B}) = \Pr(\text{A|B}) \Pr(B)$.
Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = $O(\log \log n)$, w.p. $1 - \frac{1}{n}$

Fact: Let $X_1..X_n$ be independent random variables (rv), $Y_1..Y_n$ be rv s.t Y_i depends on $X_1..X_{i-1}$

If $\Pr(Y_i = 1 | X_1, \ldots, X_{i-1}) \leq p$, then $\Pr(\sum_{i=1}^{n} Y_i \geq k) \leq \Pr(Bin(n, p) \geq k)$

Define: $N_i = \#bins with load i or more

Lemma 1: For any a, $\Pr(N_{i+1} > t | N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)}$

Proof: For any j, let $X_j = k$ if ball picks in bin k in a toss. Are X_js independent?

Define: $Y_j = 1$ if (ball j lands in bin with current load $\geq i+1$) and (N_i at time $j-1$ $\leq an$) and $= 0$ otherwise

Y_j depends on $X_1..X_{j-1}$. $\Pr(Y_j = 1 | X_1,..X_{j-1}) = \Pr(A, B) = \Pr(A|B) \Pr(B) \leq \Pr(A|B) \leq a^2$
Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin $= O(\log \log n)$, w.p. $1 - 1/n$

Fact: Let $X_1..X_n$ be independent random variables (rv), $Y_1..Y_n$ be rv s.t Y_i depends on $X_1..X_{i-1}$.

If $\Pr(Y_i = 1 | X_1, \ldots, X_{i-1}) \leq p$, then $\Pr(\sum_{i=1}^{n} Y_i \geq k) \leq \Pr(Bin(n, p) \geq k)$

Define: $N_i = \#\text{bins with load } i \text{ or more}$

Lemma 1: For any a, $\Pr(N_{i+1} > t | N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)}$

Proof: For any j, let $X_j = k$ if ball picks in bin k in a toss. Are X_js independent?

Define: $Y_j = 1$ if (ball j lands in bin with current load $\geq i+1$) and (N$_i$ at time $j-1$ $\leq an$) and $= 0$ otherwise

Y$_j$ depends on $X_1..X_{j-1}$. $\Pr(Y_j = 1 | X_1,..X_{j-1}) = \Pr(A, B) = \Pr(A|B) \Pr(B) \leq \Pr(A|B) \leq a^2$

$\Pr(N_{i+1} > t | N_i \leq an) = \frac{\Pr(N_{i+1} > t, N_i \leq an)}{\Pr(N_i \leq an)}$
Power of Two Choices

Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = $O(\log \log n)$, w.p. $1 - 1/n$

Fact: Let $X_1..X_n$ be independent random variables (rv), $Y_1..Y_n$ be rv s.t Y_i depends on $X_1..X_{i-1}$
If $\Pr(Y_i = 1|X_1, \ldots, X_{i-1}) \leq p$, then $\Pr(\sum_{i=1}^{n} Y_i \geq k) \leq \Pr(Bin(n, p) \geq k)$

Define: $N_i = \#bins with load i or more

Lemma 1: For any a, $\Pr(N_{i+1} > t|N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)}$

Proof: For any j, let $X_j = k$ if ball picks in bin k in a toss. Are X_js independent?

Define: $Y_j = 1$ if (ball j lands in bin with current load $\geq i+1$) and $(N_i$ at time $j-1 \leq an)$
$= 0$ otherwise
event A
event B

Y_j depends on $X_1..X_{j-1}$. $\Pr(Y_j = 1|X_1,..X_{j-1}) = \Pr(A, B) = \Pr(A|B) \Pr(B) \leq \Pr(A|B) \leq a^2$

$\Pr(N_{i+1} > t|N_i \leq an) = \frac{\Pr(N_{i+1} > t, N_i \leq an)}{\Pr(N_i \leq an)} = \frac{\Pr(\sum_{j=1}^{n} Y_j > t)}{\Pr(N_i \leq an)}$
Power of Two Choices

Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

\[\text{Fact: Max load of a bin} = O(\log \log n), \text{ w.p. } 1 - 1/n \]

\[\text{Fact: Let } X_1..X_n \text{ be independent random variables (rv), } Y_1..Y_n \text{ be rv s.t } Y_i \text{ depends on } X_1..X_{i-1} \]

If \(\Pr(Y_i = 1 | X_1, \ldots, X_{i-1}) \leq p \), then \(\Pr(\sum_{i=1}^{n} Y_i \geq k) \leq \Pr(\text{Bin}(n, p) \geq k) \)

Define: \(N_i = \# \text{bins with load } i \text{ or more} \)

Lemma 1: For any \(a \), \(\Pr(N_{i+1} > t | N_i \leq an) \leq \frac{\Pr(\text{Bin}(n, a^2) > t)}{\Pr(N_i \leq an)} \)

Proof: For any \(j \), let \(X_j = k \) if ball picks in bin \(k \) in a toss. Are \(X_j \)s independent?

Define: \(Y_j = 1 \) if (ball \(j \) lands in bin with current load \(\geq i+1 \)) and \(N_i \) at time \(j-1 \leq an \) \(= 0 \) otherwise \(\quad \) event A \(\quad \) event B

\(Y_j \) depends on \(X_1..X_{j-1} \). \(\Pr(Y_j = 1 | X_1,..X_{j-1}) = \Pr(A, B) = \Pr(A|B) \Pr(B) \leq \Pr(A|B) \leq a^2 \)

\(\Pr(N_{i+1} > t | N_i \leq an) = \frac{\Pr(N_{i+1} > t, N_i \leq an)}{\Pr(N_i \leq an)} = \frac{\Pr(\sum_{j=1}^{n} Y_j > t)}{\Pr(N_i \leq an)} \leq \frac{\Pr(\text{Bin}(n, a^2) > t)}{\Pr(N_i \leq an)} \) from Fact
Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = $O(\log \log n)$, w.p. $1 - 1/n$

Define: $N_i = \#\text{bins with load } i \text{ or more}$

Lemma 1: For any a, \[\Pr(N_{i+1} > t | N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)} \]

Lemma 2: If $a^2 \geq 6 \ln n/n$ then \[\Pr(Bin(n, a^2) > 2na^2) \leq 1/n^2 \]
If $a^2 < 6 \ln n/n$ then \[\Pr(Bin(n, a^2) > 16 \ln n) \leq 1/n^2 \]
Power of Two Choices

Toss \(n \) balls into \(n \) bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = \(O(\log \log n) \), w.p. 1-1/n

Define: \(N_i = \# \text{bins with load } i \text{ or more} \)

Lemma 1: For any \(a \), \(\Pr(N_{i+1} > t \mid N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)} \)

Lemma 2: If \(a^2 \geq 6 \ln n/n \) then \(\Pr(Bin(n, a^2) > 2na^2) \leq 1/n^2 \)
If \(a^2 < 6 \ln n/n \) then \(\Pr(Bin(n, a^2) > 16 \ln n) \leq 1/n^2 \)

Proof: Use Chernoff Bounds. What is \(X \) and what is \(X_i \)?

Chernoff Bounds:
Let \(X_1, \ldots, X_n \) be independent 0/1 rvs, \(X = X_1 + \ldots + X_n \). For \(t > 0 \),
\[
\Pr(X \geq (1 + t)E[X]) \leq \left(\frac{e^t}{(1 + t)^{(1+t)}} \right)^{E[X]}
\]
For \(t < 2e - 1 \),
\[
\Pr(X \geq (1 + t)E[X]) \leq \exp(-t^2E[X]/4)
\]
Power of Two Choices

Toss \(n \) balls into \(n \) bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = \(O(\log \log n) \), w.p. \(1 - 1/n \)

Define: \(N_i = \# \) bins with load \(i \) or more

Lemma 1: For any \(a \), \(\Pr(N_{i+1} > t | N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)} \)

Lemma 2: If \(a^2 \geq 6 \ln n/n \) then \(\Pr(Bin(n, a^2) > 2na^2) \leq 1/n^2 \)
If \(a^2 < 6 \ln n/n \) then \(\Pr(Bin(n, a^2) > 16 \ln n) \leq 1/n^2 \)

Proof: Use Chernoff Bounds. What is \(X \) and what is \(X_i \) ?

For the first part, \(E[X] = na^2 \)

Chernoff Bounds:
Let \(X_1, \ldots, X_n \) be independent 0/1 rvs, \(X = X_1 + \ldots + X_n \). For \(t > 0 \),

\[
\Pr(X \geq (1 + t)E[X]) \leq \left(\frac{e^t}{(1 + t)^{(1+t)}} \right)^{E[X]}
\]

For \(t < 2e - 1 \),

\[
\Pr(X \geq (1 + t)E[X]) \leq \exp(-t^2E[X]/4)
\]
Power of Two Choices

Toss \(n \) balls into \(n \) bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = \(O(\log \log n) \), w.p. \(1 - 1/n \)

Define: \(N_i = \#\) bins with load \(i \) or more

Lemma 1: For any \(a \), \(\Pr(N_{i+1} > t | N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)} \)

Lemma 2: If \(a^2 \geq 6 \ln n/n \) then \(\Pr(Bin(n, a^2) > 2na^2) \leq 1/n^2 \)

If \(a^2 < 6 \ln n/n \) then \(\Pr(Bin(n, a^2) > 16 \ln n) \leq 1/n^2 \)

Proof: Use Chernoff Bounds. What is \(X \) and what is \(X_i \)?

For the first part, \(E[X] = na^2 \) \(t = 1 \)

Chernoff Bounds:
Let \(X_1, \ldots, X_n \) be independent 0/1 rvs, \(X = X_1 + \ldots + X_n \). For \(t > 0 \),
\[
\Pr(X \geq (1 + t)E[X]) \leq \left(\frac{e^t}{(1 + t)(1 + t)}\right)^{E[X]}
\]
For \(t < 2e - 1 \),
\[
\Pr(X \geq (1 + t)E[X]) \leq \exp(-t^2E[X]/4)
\]
Power of Two Choices

Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = O(log log n), w.p. 1-1/n

Define: \(N_i = \# \text{bins with load } i \text{ or more} \)

Lemma 1: For any \(a \), \(\Pr(N_{i+1} > t | N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)} \)

Lemma 2: If \(a^2 \geq 6 \ln n / n \) then \(\Pr(Bin(n, a^2) > 2na^2) \leq 1/n^2 \)
If \(a^2 < 6 \ln n / n \) then \(\Pr(Bin(n, a^2) > 16 \ln n) \leq 1/n^2 \)

Proof: Use Chernoff Bounds. What is \(X \) and what is \(X_i \)?

For the first part, \(E[X] = na^2 \ t = 1 \)
\(\Pr(Bin(n, a^2) > 2na^2) \leq (e/4)^{na^2} \)

Chernoff Bounds:
Let \(X_1, \ldots, X_n \) be independent 0/1 rvs, \(X = X_1 + \ldots + X_n \). For \(t > 0 \),
\[\Pr(X \geq (1 + t)E[X]) \leq \left(\frac{e^t}{(1 + t)^{(1+t)}} \right)^{E[X]} \]
For \(t < 2e - 1 \),
\[\Pr(X \geq (1 + t)E[X]) \leq \exp(-t^2E[X]/4) \]
Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = $\Theta(\log \log n)$, w.p. $1 - 1/n$

Define: $N_i = \#$bins with load i or more

Lemma 1: For any a, $\Pr(N_{i+1} > t | N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)}$

Lemma 2: If $a^2 \geq 6 \ln n / n$ then $\Pr(Bin(n, a^2) > 2na^2) \leq 1/n^2$

If $a^2 < 6 \ln n / n$ then $\Pr(Bin(n, a^2) > 16 \ln n) \leq 1/n^2$

Proof: Use Chernoff Bounds. What is X and what is X_i?

For the first part, $E[X] = n a^2$, $t = 1$

$\Pr(Bin(n, a^2) > 2na^2) \leq \left(\frac{e^t}{(1+t)(1+t)}\right)^{E[X]}$

For $t < 2e - 1$,

$\Pr(X \geq (1 + t)E[X]) \leq \exp(-t^2E[X]/4)$
Power of Two Choices

Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = $O(\log \log n)$, w.p. $1 - 1/n$

Define: $N_i = \#\text{bins with load } i \text{ or more}$

Lemma 1: For any a, $\Pr(N_{i+1} > t | N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)}$

Lemma 2: If $a^2 \geq 6 \ln n / n$ then $\Pr(Bin(n, a^2) > 2na^2) \leq 1/n^2$
If $a^2 < 6 \ln n / n$ then $\Pr(Bin(n, a^2) > 16 \ln n) \leq 1/n^2$

Proof: Use Chernoff Bounds. What is X and what is X_i?
For the first part, $E[X] = na^2$, $t = 1$
$\Pr(Bin(n, a^2) > 2na^2) \leq (e/4)^{na^2} \leq (e/4)^{6\ln n} \leq 1/n^2$
For the second part, $E[X] < 6 \ln n$

Chernoff Bounds:
Let $X_1, .., X_n$ be independent 0/1 rvs, $X = X_1 + .. + X_n$. For $t > 0$,
$\Pr(X \geq (1 + t)E[X]) \leq \left(\frac{e^t}{(1 + t)(1 + t)}\right)^{E[X]}$
For $t < 2e - 1$,
$\Pr(X \geq (1 + t)E[X]) \leq \exp(-t^2E[X]/4)$
Power of Two Choices

Toss \(n \) balls into \(n \) bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = \(O(\log \log n) \), w.p. \(1 - 1/n \)

Define: \(N_i = \# \text{bins with load } i \text{ or more} \)

Lemma 1: For any \(a \), \(\Pr(N_{i+1} > t | N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)} \)

Lemma 2: If \(a^2 \geq 6 \ln n/n \) then \(\Pr(Bin(n, a^2) > 2na^2) \leq 1/n^2 \)

If \(a^2 < 6 \ln n/n \) then \(\Pr(Bin(n, a^2) > 16 \ln n) \leq 1/n^2 \)

Proof: Use Chernoff Bounds. What is \(X \) and what is \(X_i \)?

For the first part, \(E[X] = na^2 \) \(t = 1 \)

\(\Pr(Bin(n, a^2) > 2na^2) \leq (e/4)^{na^2} \leq (e/4)^{6\ln n} \leq 1/n^2 \)

For the second part, \(E[X] < 6 \ln n \) so \(t > 10 \ln n/E[X] \)

Chernoff Bounds:
Let \(X_1, ..., X_n \) be independent 0/1 rvs, \(X = X_1 + .. + X_n \). For \(t > 0 \),

\(\Pr(X \geq (1 + t)E[X]) \leq \left(\frac{e^t}{(1 + t)^{(1 + t)}} \right)^{E[X]} \)

For \(t < 2e - 1 \),

\(\Pr(X \geq (1 + t)E[X]) \leq \exp(-t^2E[X]/4) \)
Toss \(n \) balls into \(n \) bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = \(O(\log \log n) \), w.p. 1 - 1/n

Define: \(N_i = \# \text{bins with load } i \) or more

Lemma 1: For any \(a \),
\[
\Pr(N_{i+1} > t | N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)}
\]

Lemma 2: If \(a^2 \geq 6 \ln n / n \) then \(\Pr(Bin(n, a^2) > 2na^2) \leq 1/n^2 \)

If \(a^2 < 6 \ln n / n \) then \(\Pr(Bin(n, a^2) > 16 \ln n) \leq 1/n^2 \)

Proof: Use Chernoff Bounds. What is \(X \) and what is \(X_i \)?

For the first part, \(E[X] = na^2 \) \(t = 1 \)
\[
\Pr(Bin(n, a^2) > 2na^2) \leq (e/4)^{na^2} \leq (e/4)^{6\ln n} \leq 1/n^2
\]

For the second part, \(E[X] < 6 \ln n \) so \(t > 10 \ln n / E[X] \)
\[
\Pr(Bin(n, a^2) > 16 \ln n) \leq \exp(-(10 \ln n / E[X])^2 \cdot E[X]/4)
\]

Chernoff Bounds:
Let \(X_1, \ldots, X_n \) be independent 0/1 rvs, \(X = X_1 + \ldots + X_n \). For \(t > 0 \),
\[
\Pr(X \geq (1 + t)E[X]) \leq \left(\frac{e^t}{(1 + t)^{(1+t)}} \right)^{E[X]}
\]

For \(t < 2e - 1 \),
\[
\Pr(X \geq (1 + t)E[X]) \leq \exp(-t^2E[X]/4)
\]
Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = $O(\log \log n)$, w.p. $1 - 1/n$

Define: N_i = #bins with load i or more

Lemma 1: For any a,
$$\Pr(N_{i+1} > t | N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)}$$

Lemma 2: If
- $a^2 \geq 6 \ln n / n$ then $\Pr(Bin(n, a^2) > 2na^2) \leq 1/n^2$
- If $a^2 < 6 \ln n / n$ then $\Pr(Bin(n, a^2) > 16 \ln n) \leq 1/n^2$

Proof: Use Chernoff Bounds. What is X and what is X_i?

For the first part, $E[X] = na^2$ $t = 1$
$$\Pr(Bin(n, a^2) > 2na^2) \leq (e/4)^{na^2} \leq (e/4)^{6\ln n} \leq 1/n^2$$

For the second part, $E[X] < 6 \ln n$ so $t > 10 \ln n / E[X]$
$$\Pr(Bin(n, a^2) > 16 \ln n) \leq \exp(-(10 \ln n / E[X])^2 \cdot E[X]/4) \leq \exp(-25 \ln^2 n / E[X])$$

Chernoff Bounds:
Let $X_1, ..., X_n$ be independent 0/1 rvs, $X = X_1 + .. + X_n$. For $t>0$,
$$\Pr(X \geq (1+t)E[X]) \leq \left(\frac{e^t}{(1+t)(1+t)}\right)^{E[X]}$$

For $t < 2e - 1$,
$$\Pr(X \geq (1+t)E[X]) \leq \exp(-t^2E[X]/4)$$
Power of Two Choices

Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = $O(\log \log n)$, w.p. $1 - 1/n$

Define: $N_i = \#\text{bins with load } i \text{ or more}$

Lemma 1: For any a,
$$\Pr(N_{i+1} > t | N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)}$$

Lemma 2: If $a^2 \geq 6\ln n/n$ then $\Pr(Bin(n, a^2) > 2na^2) \leq 1/n^2$
If $a^2 < 6\ln n/n$ then $\Pr(Bin(n, a^2) > 16\ln n) \leq 1/n^2$

Proof: Use Chernoff Bounds. What is X and what is X_i?

For the first part, $E[X] = na^2$, $t = 1$

$$\Pr(Bin(n, a^2) > 2na^2) \leq (e/4)^{na^2} \leq (e/4)^{6\ln n} \leq 1/n^2$$

For the second part, $E[X] < 6\ln n$ so $t > 10\ln n/E[X]$

$$\Pr(Bin(n, a^2) > 16\ln n) \leq \exp(-(10\ln n/E[X])^2 \cdot E[X]/4) \leq \exp(-25\ln^2 n/E[X]) \leq e^{-4\ln n} \leq n^{-2}$$

Chernoff Bounds:
Let $X_1, ..., X_n$ be independent 0/1 rvs, $X = X_1 + .. + X_n$. For $t > 0$,

$$\Pr(X \geq (1 + t)E[X]) \leq \left(\frac{e^t}{(1 + t)^{(1+t)}}\right)^{E[X]}$$

For $t < 2e - 1$,

$$\Pr(X \geq (1 + t)E[X]) \leq \exp(-t^2 E[X]/4)$$
Toss \(n \) balls into \(n \) bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = \(O(\log \log n) \), w.p. 1- \(1/n \)

Define: \(N_i = \# \text{bins with load } i \text{ or more} \)

Lemma 1: For any \(a \), \(\Pr(N_{i+1} > t | N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)} \)

Lemma 2: If \(a^2 \geq 6 \ln n/n \) then \(\Pr(Bin(n, a^2) > 2na^2) \leq 1/n^2 \)

If \(a^2 < 6 \ln n/n \) then \(\Pr(Bin(n, a^2) > 16 \ln n) \leq 1/n^2 \)
Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = $O(\log \log n)$, w.p. 1 - 1/n

Define: $N_i = \#\text{bins with load } i \text{ or more}$

Lemma 1: For any a, $\Pr(N_{i+1} > t|N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)}$

Lemma 2: If $a^2 \geq 6 \ln n/n$ then $\Pr(Bin(n, a^2) > 2na^2) \leq 1/n^2$

If $a^2 < 6 \ln n/n$ then $\Pr(Bin(n, a^2) > 16 \ln n) \leq 1/n^2$

Define: Sequence of a_i values: $a_4 = 1/4 \quad a_{i+1} = 2a_i^2 \quad E_i = \text{good event } (N_i \leq a_i n)$
Power of Two Choices

Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = $O(\log \log n)$, w.p. 1-$1/n$

Define: $N_i = \#\text{bins with load } i \text{ or more}$

Lemma 1: For any a, $\Pr(N_{i+1} > t|N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)}$

Lemma 2: If $a^2 \geq 6 \ln n/n$ then $\Pr(Bin(n, a^2) > 2na^2) \leq 1/n^2$

If $a^2 < 6 \ln n/n$ then $\Pr(Bin(n, a^2) > 16 \ln n) \leq 1/n^2$

Define: Sequence of a_i values: $a_4 = 1/4 \quad a_{i+1} = 2a_i^2 \quad E_i = \text{good event (}N_i \leq a_i n\text{)}$

Lemma 3: If $a_i^2 \geq 6 \ln n/n$ then $\Pr(\neg(E_{i+1})) \leq (i + 1)/n^2$
Power of Two Choices

Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = O(log log n), w.p. 1 - 1/n

Define: \(N_i = \#\text{bins with load } i \text{ or more} \)

Lemma 1: For any a, \(\Pr(N_{i+1} > t | N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)} \)

Lemma 2: If \(a^2 \geq 6 \ln n/n \) then \(\Pr(Bin(n, a^2) > 2na^2) \leq 1/n^2 \)

If \(a^2 < 6 \ln n/n \) then \(\Pr(Bin(n, a^2) > 16 \ln n) \leq 1/n^2 \)

Define: Sequence of \(a_i \) values: \(a_4 = 1/4 \) \(a_{i+1} = 2a_i^2 \) \(E_i = \text{good event (} N_i \leq a_i n) \)

Lemma 3: If \(a_i^2 \geq 6 \ln n/n \) then \(\Pr(not(E_{i+1})) \leq (i + 1)/n^2 \)

Proof: By Induction. Base Case: \(i = 4 \). \(\Pr(\text{not}(E_4)) = 0 \), as at most \(n/4 \) bins can have \(\geq 4 \) balls
Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin $= O(\log \log n)$, w.p. $1 - 1/n$

Define: $N_i = \#\text{bins with load } i \text{ or more}$

Lemma 1: For any a, $\Pr(N_{i+1} > t | N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)}$

Lemma 2: If $a^2 \geq 6 \ln n/n$ then $\Pr(Bin(n, a^2) > 2na^2) \leq 1/n^2$
If $a^2 < 6 \ln n/n$ then $\Pr(Bin(n, a^2) > 16 \ln n) \leq 1/n^2$

Define: Sequence of a_i values: $a_4 = 1/4$ $a_{i+1} = 2a_i^2$ $E_i = \text{good event} (N_i \leq a_i n)$

Lemma 3: If $a_i^2 \geq 6 \ln n/n$ then $\Pr(\neg(E_{i+1})) \leq (i + 1)/n^2$

Proof: By Induction. Base Case: $i = 4$. $\Pr(\neg(E_4)) = 0$, as at most $n/4$ bins can have ≥4 balls
Inductive Case: $\Pr(\neg(E_{i+1})) \leq \Pr(\neg(E_{i+1})|E_i) \Pr(E_i) + \Pr(\neg(E_i))$
Toss \(n \) balls into \(n \) bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = \(O(\log \log n) \), w.p. \(1 - 1/n \)

Define: \(N_i = \# \text{bins with load } i \) or more

Lemma 1: For any \(a \), \(\Pr(N_{i+1} > t | N_i \leq an) \leq \frac{\Pr(\text{Bin}(n, a^2) > t)}{\Pr(N_i \leq an)} \)

Lemma 2:
- If \(a^2 \geq 6 \ln n/n \), then \(\Pr(\text{Bin}(n, a^2) > 2na^2) \leq 1/n^2 \)
- If \(a^2 < 6 \ln n/n \), then \(\Pr(\text{Bin}(n, a^2) > 16 \ln n) \leq 1/n^2 \)

Define: Sequence of \(a_i \) values: \(a_4 = 1/4 \) \(a_{i+1} = 2a_i^2 \) \(E_i = \text{good event } (N_i \leq a_i n) \)

Lemma 3: If \(a_i^2 \geq 6 \ln n/n \) then \(\Pr(\text{not}(E_{i+1})) \leq (i + 1)/n^2 \)

Proof: By Induction. Base Case: \(i = 4 \). \(\Pr(\text{not}(E_4)) = 0 \), as at most \(n/4 \) bins can have \(\geq 4 \) balls

Inductive Case: \(\Pr(\text{not}(E_{i+1})) \leq \Pr(\text{not}(E_{i+1})|E_i) \Pr(E_i) + \Pr(\text{not}(E_i)) \)

\(\leq 1/n^2 \) from previous two lemmas
Power of Two Choices

Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = O(log log n), w.p. 1-1/n

Define: \(N_i = \#\text{bins with load i or more} \)

Lemma 1: For any a, \(\Pr(N_{i+1} > t | N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)} \)

Lemma 2: If \(a^2 \geq 6 \ln n/n \) then \(\Pr(Bin(n, a^2) > 2na^2) \leq 1/n^2 \)

Define: Sequence of \(a_i \) values: \(a_4 = 1/4 \) \(a_{i+1} = 2a_i^2 \) \(E_i = \text{good event (} N_i \leq a_i n \) \)

Lemma 3: If \(a_i^2 \geq 6 \ln n/n \) then \(\Pr(not(E_{i+1})) \leq (i + 1)/n^2 \)

Proof: By Induction. Base Case: \(i = 4 \). \(\Pr(not(E_4)) = 0 \), as at most n/4 bins can have >=4 balls

Inductive Case: \(\Pr(not(E_{i+1})) \leq \Pr(not(E_{i+1})|E_i) \Pr(E_i) + \Pr(not(E_i)) \)

\(\leq 1/n^2 \text{ from previous two lemmas} \)

\(\leq i/n^2 \)
Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = $O(\log \log n)$, w.p. $1 - 1/n$

Define: $N_i = \#\text{bins with load } i \text{ or more}$

Lemma 1: For any a, $Pr(N_{i+1} > t | N_i \leq an) \leq \frac{Pr(Bin(n, a^2) > t)}{Pr(N_i \leq an)}$

Lemma 2: If $a^2 \geq 6 \ln n / n$ then $Pr(Bin(n, a^2) > 2na^2) \leq 1/n^2$
If $a^2 < 6 \ln n / n$ then $Pr(Bin(n, a^2) > 16 \ln n) \leq 1/n^2$

Define: Sequence of a_i values: $a_4 = 1/4 \quad a_{i+1} = 2a_i^2 \quad E_i = \text{good event } (N_i \leq a_i n)$

Lemma 3: If $a_i^2 \geq 6 \ln n / n$ then $Pr(\neg E_{i+1}) \leq (i + 1)/n^2$

Proof: By Induction. Base Case: $i = 4$. $Pr(\neg E_4) = 0$, as at most $n/4$ bins can have ≥ 4 balls
Inductive Case: $Pr(\neg E_{i+1}) \leq Pr(\neg E_{i+1} | E_i) Pr(E_i) + Pr(\neg E_i) \leq (i + 1)/n^2$

$\leq 1/n^2$ from previous two lemmas $\leq i/n^2$
Power of Two Choices

Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = \(O(\log \log n)\), w.p. \(1 - 1/n\)

Define: \(N_i = \#\) bins with load \(i\) or more

Lemma 1: For any \(a\), \(\Pr(N_{i+1} > t | N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)}\)

Lemma 2: If \(a^2 \geq 6 \ln n / n\) then \(\Pr(Bin(n, a^2) > 2na^2) \leq 1/n^2\)
If \(a^2 < 6 \ln n / n\) then \(\Pr(Bin(n, a^2) > 16 \ln n) \leq 1/n^2\)

Define: Sequence of \(a_i\) values: \(a_4 = 1/4\) \(a_{i+1} = 2a_i^2\) \(E_i = \) good event \((N_i \leq a_i n)\)

Lemma 3: If \(a_i^2 \geq 6 \ln n / n\) then \(\Pr(\text{not}(E_{i+1})) \leq (i + 1)/n^2\)
Power of Two Choices

Toss \(n \) balls into \(n \) bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = \(O(\log \log n) \), w.p. \(1 - 1/n \)

Define: \(N_i = \# \text{bins with load } i \text{ or more} \)

Lemma 1: For any \(a \), \(\Pr(N_{i+1} > t | N_i \leq an) \leq \frac{\Pr(\text{Bin}(n, a^2) > t)}{\Pr(N_i \leq an)} \)

Lemma 2: If \(a^2 \geq 6 \ln n/n \) then \(\Pr(\text{Bin}(n, a^2) > 2na^2) \leq 1/n^2 \)

\(\text{If } a^2 < 6 \ln n/n \text{ then } \Pr(\text{Bin}(n, a^2) > 16 \ln n) \leq 1/n^2 \)

Define: Sequence of \(a_i \) values: \(a_4 = 1/4 \quad a_{i+1} = 2a_i^2 \quad E_i = \text{good event } (N_i \leq a_i n) \)

Lemma 3: If \(a_i^2 \geq 6 \ln n/n \) then \(\Pr(\text{not}(E_{i+1})) \leq (i + 1)/n^2 \)

Let \(I^* = \min \{ a_i^2 \leq 6 \ln n/n \} \)
Power of Two Choices

Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = $O(\log \log n)$, w.p. $1 - 1/n$

Define: $N_i = \#\text{bins with load } i \text{ or more}$

Lemma 1: For any a, $\Pr(N_{i+1} > t|N_i \leq an) \leq \frac{\Pr(\text{Bin}(n, a^2) > t)}{\Pr(N_i \leq an)}$

Lemma 2: If $a^2 \geq 6 \ln n/n$ then $\Pr(\text{Bin}(n, a^2) > 2na^2) \leq 1/n^2$

If $a^2 < 6 \ln n/n$ then $\Pr(\text{Bin}(n, a^2) > 16 \ln n) \leq 1/n^2$

Define: Sequence of a_i values: $a_4 = 1/4$ \quad $a_{i+1} = 2a_i^2$ \quad $E_i = \text{good event (}N_i \leq a_i n\text{)}$

Lemma 3: If $a_i^2 \geq 6 \ln n/n$ then $\Pr(\text{not}(E_{i+1})) \leq (i + 1)/n^2$

Let $I^* = \min_i \{a_i^2 \leq 6 \ln n/n\}$ \quad Then, $\Pr[\text{not}(E_{I^*})] \leq I^*/n^2 \leq 1/n$
Toss \(n \) balls into \(n \) bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = \(O(\log \log n) \), w.p. 1 - 1/n

Define: \(N_i = \# \) bins with load \(i \) or more

Lemma 1: For any \(a \), \(\Pr(N_{i+1} > t | N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)} \)

Lemma 2: If \(a^2 \geq 6 \ln n / n \) then \(\Pr(Bin(n, a^2) > 2na^2) \leq 1/n^2 \)

If \(a^2 < 6 \ln n / n \) then \(\Pr(Bin(n, a^2) > 16 \ln n) \leq 1/n^2 \)

Define: Sequence of \(a_i \) values: \(a_4 = 1/4 \quad a_{i+1} = 2a_i^2 \quad E_i = \) good event \((N_i \leq a_i n) \)

Lemma 3: If \(a_i^2 \geq 6 \ln n / n \) then \(\Pr(\text{not}(E_{i+1})) \leq (i + 1) / n^2 \)

Let \(I^* = \min_i \{a_i^2 \leq 6 \ln n / n\} \) Then, \(\Pr(\text{not}(E_{I^*})) \leq I^*/n^2 \leq 1/n \)

But \(N_{I^*+1} \) or \(N_{I^*+2} \) may still be large, so we need to bound them
Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = $O(\log \log n)$, w.p. $1 - 1/n$

Define: $N_i = \# \text{bins with load } i \text{ or more}$

Lemma 1: For any a, $\Pr(N_{i+1} > t | N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)}$

Lemma 2: If $a^2 \geq 6 \ln n / n$ then $\Pr(Bin(n, a^2) > 2na^2) \leq 1/n^2$
If $a^2 < 6 \ln n / n$ then $\Pr(Bin(n, a^2) > 16 \ln n) \leq 1/n^2$

Define: Sequence of a_i values: $a_4 = 1/4$, $a_{i+1} = 2a_i^2$, $E_i = \text{good event (} N_i \leq a_i n \)$

Lemma 3: If $a_i^2 \geq 6 \ln n / n$ then $\Pr(\text{not}(E_{i+1})) \leq (i + 1)/n^2$
Let $I^* = \min_i \{a_i^2 \leq 6 \ln n / n\}$ Then, $\Pr(\text{not}(E_{I^*})) \leq I^*/n^2 \leq 1/n$
$\Pr(N_{I^*+1} > 16 \ln n) \leq \Pr(N_{I^*+1} > 16 \ln n | E_{I^*}) \Pr(E_{I^*}) + \Pr(\text{not}(E_{I^*}))$
Power of Two Choices

Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = $O(\log \log n)$, w.p. $1 - 1/n$

Define: $N_i = \# \text{bins with load } i \text{ or more}$

Lemma 1: For any a, $\Pr(N_{i+1} > t | N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)}$

Lemma 2: If $a^2 \geq 6 \ln n/n$ then $\Pr(Bin(n, a^2) > 2na^2) \leq 1/n^2$
If $a^2 < 6 \ln n/n$ then $\Pr(Bin(n, a^2) > 16 \ln n) \leq 1/n^2$

Define: Sequence of a_i values: $a_4 = 1/4 \quad a_{i+1} = 2a_i^2 \quad E_i = \text{good event (} N_i \leq a_i n)$

Lemma 3: If $a_i^2 \geq 6 \ln n/n$ then $\Pr(\text{not}(E_{i+1})) \leq (i + 1)/n^2$
Let $I^* = \min \{ a_i^2 \leq 6 \ln n/n \}$ Then, $\Pr(\text{not}(E_{I^*})) \leq I^*/n^2 \leq 1/n$

$\Pr(N_{I^*+1} > 16 \ln n) \leq \Pr(N_{I^*+1} > 16 \ln n | E_{I^*}) \Pr(E_{I^*}) + \Pr(\text{not}(E_{I^*}))$

$\leq \Pr(Bin(n, a_{I^*+1}^2) > 16 \ln n | E_{I^*}) \Pr(E_{I^*}) + \Pr(\text{not}(E_{I^*}))$
Power of Two Choices

Toss \(n \) balls into \(n \) bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = \(O(\log \log n) \), w.p. \(1 - 1/n \)

Define: \(N_i = \# \text{bins with load } i \) or more

Lemma 1: For any \(a \), \(\Pr(N_{i+1} > t | N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)} \)

Lemma 2: If \(a^2 \geq 6 \ln n/n \) then \(\Pr(Bin(n, a^2) > 2na^2) \leq 1/n^2 \)

If \(a^2 < 6 \ln n/n \) then \(\Pr(Bin(n, a^2) > 16 \ln n) \leq 1/n^2 \)

Define: Sequence of \(a_i \) values: \(a_4 = 1/4 \quad a_{i+1} = 2a_i^2 \quad E_i = \text{good event} (N_i \leq a_i n) \)

Lemma 3: If \(a_i^2 \geq 6 \ln n/n \) then \(\Pr(\text{not}(E_{i+1})) \leq (i + 1)/n^2 \)

Let \(I^* = \min_i \{a_i^2 \leq 6 \ln n/n\} \) Then, \(\Pr[\text{not}(E_{I^*})] \leq I^*/n^2 \leq 1/n \)

\[
\Pr(N_{I^*+1} > 16 \ln n) \leq \Pr(N_{I^*+1} > 16 \ln n | E_{I^*}) \Pr(E_{I^*}) + \Pr(\text{not}(E_{I^*})) \Pr(E_{I^*}) + \Pr(\text{not}(E_{I^*}))
\]

\[
\leq \Pr(Bin(n, a_{I^*+1}^2) > 16 \ln n | E_{I^*}) \Pr(E_{I^*}) + \Pr(\text{not}(E_{I^*}))
\]
Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = $O(\log \log n)$, w.p. $1 - 1/n$

Define: N_i = #bins with load i or more

Lemma 1: For any a, $\Pr(N_{i+1} > t | N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)}$

Lemma 2: If $a^2 \geq 6 \ln n/n$ then $\Pr(Bin(n, a^2) > 2na^2) \leq 1/n^2$

If $a^2 < 6 \ln n/n$ then $\Pr(Bin(n, a^2) > 16 \ln n) \leq 1/n^2$

Define: Sequence of a_i values: $a_4 = 1/4$ $a_{i+1} = 2a_i^2$ E_i = good event ($N_i \leq a_i n$)

Lemma 3: If $a_i^2 \geq 6 \ln n/n$ then $\Pr(\text{not}(E_{i+1})) \leq (i + 1)/n^2$

Let $I^* = \min_i \{ a_i^2 \leq 6 \ln n/n \}$ Then, $\Pr(\text{not}(E_{I^*})) \leq I^*/n^2 \leq 1/n$

$\Pr(N_{I^*+1} > 16 \ln n) \leq \Pr(N_{I^*+1} > 16 \ln n | E_{I^*}) \Pr(E_{I^*}) + \Pr(\text{not}(E_{I^*}))$

$\leq \Pr(Bin(n, a_{I^*+1}^2) > 16 \ln n | E_{I^*}) \Pr(E_{I^*}) + \Pr(\text{not}(E_{I^*})) \leq (n + 1)/n^2$
Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = $O(\log \log n)$, w.p. $1 - 1/n$

Define: $N_i = \#$bins with load i or more

Lemma 1: For any a, $\Pr(N_{i+1} > t | N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)}$

Lemma 2: If $a^2 \geq 6 \ln n / n$ then $\Pr(Bin(n, a^2) > 2na^2) \leq 1/n^2$

If $a^2 < 6 \ln n / n$ then $\Pr(Bin(n, a^2) > 16 \ln n) \leq 1/n^2$

Define: Sequence of a_i values: $a_4 = 1/4 \quad a_{i+1} = 2a_i^2 \quad E_i = \text{good event (} N_i \leq a_i n)$

Lemma 3: If $a_i^2 \geq 6 \ln n / n$ then $\Pr(\text{not}(E_{i+1})) \leq (i + 1)/n^2$

Let $I^* = \min_i \{a_i^2 \leq 6 \ln n / n\}$ Then, $\Pr(\text{not}(E_{I^*})) \leq I^* / n^2 \leq 1/n$

$\Pr(N_{I^*+1} > 16 \ln n) \leq 2/n$
Power of Two Choices

Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = $O(\log \log n)$, w.p. $1 - 1/n$

Define: $N_i = \#\text{bins with load } i \text{ or more}$

Lemma 1: For any a, $\Pr(N_{i+1} > t|N_i \leq an) \leq \frac{\Pr(\text{Bin}(n, a^2) > t)}{\Pr(N_i \leq an)}$

Lemma 2: If $a^2 \geq 6 \ln n/n$ then $\Pr(\text{Bin}(n, a^2) > 2na^2) \leq 1/n^2$
If $a^2 < 6 \ln n/n$ then $\Pr(\text{Bin}(n, a^2) > 16 \ln n) \leq 1/n^2$

Define: Sequence of a_i values: $a_4 = 1/4$ $a_{i+1} = 2a_i^2$ $E_i = \text{good event (}N_i \leq a_i n\text{)}$

Lemma 3: If $a_i^2 \geq 6 \ln n/n$ then $\Pr(\text{not}(E_{i+1})) \leq (i + 1)/n^2$
Let $I^* = \min_i\{a_i^2 \leq 6 \ln n/n\}$ Then, $\Pr(\text{not}(E_{I^*})) \leq I^*/n^2 \leq 1/n$
$\Pr(N_{I^*+1} > 16 \ln n) \leq 2/n$
$\Pr(N_{I^*+2} \geq 1) \leq \Pr(\text{Bin}(n, \frac{(16 \ln n)^2}{n}) \geq 1) + \Pr(N_{I^*+1} > 16 \ln n)$
Power of Two Choices

Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = $O(\log \log n)$, w.p. $1 - 1/n$

Define: $N_i = \#$ bins with load i or more

Lemma 1: For any a, $\Pr(N_{i+1} > t | N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)}$

Lemma 2: If $a^2 \geq 6 \ln n/n$ then $\Pr(Bin(n, a^2) > 2na^2) \leq 1/n^2$

If $a^2 < 6 \ln n/n$ then $\Pr(Bin(n, a^2) > 16 \ln n) \leq 1/n^2$

Define: Sequence of a_i values: $a_4 = 1/4 \quad a_{i+1} = 2a_i^2 \quad E_i = \text{good event (}N_i \leq a_i n\text{)}$

Lemma 3: If $a_i^2 \geq 6 \ln n/n$ then $\Pr(not(E_{i+1})) \leq (i + 1)/n^2$

Let $I^* = \min_i \{a_i^2 \leq 6 \ln n/n\}$ Then, $\Pr(not(E_{I^*})) \leq I^*/n^2 \leq 1/n$

$\Pr(N_{I^*+1} > 16 \ln n) \leq 2/n$

$\Pr(N_{I^*+2} \geq 1) \leq \Pr(Bin(n, \frac{(16 \ln n)^2}{n}) \geq 1) + \Pr(N_{I^*+1} > 16 \ln n)$

$\leq E(Bin(n, \frac{(16 \ln n)^2}{n})) + 2/n$
Toss \(n \) balls into \(n \) bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = \(O(\log \log n) \), w.p. \(1-1/n \)

Define: \(N_i = \# \text{bins with load } i \text{ or more} \)

Lemma 1: For any \(a \), \(\Pr(N_{i+1} > t | N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)} \)

Lemma 2: If \(a^2 \geq 6 \ln n / n \) then \(\Pr(Bin(n, a^2) > 2na^2) \leq 1/n^2 \)
If \(a^2 < 6 \ln n / n \) then \(\Pr(Bin(n, a^2) > 16 \ln n) \leq 1/n^2 \)

Define: Sequence of \(a_i \) values: \(a_4 = 1/4 \quad a_{i+1} = 2a_i^2 \) \(E_i = \text{good event } (N_i \leq a_i n) \)

Lemma 3: If \(a_i^2 \geq 6 \ln n / n \) then \(\Pr(\text{not}(E_{i+1})) \leq (i + 1)/n^2 \)
Let \(I^* = \min_i \{a_i^2 \leq 6 \ln n / n \} \) Then, \(\Pr(\text{not}(E_{I^*})) \leq I^*/n^2 \leq 1/n \)
\(\Pr(N_{I^*+1} > 16 \ln n) \leq 2/n \)
\(\Pr(N_{I^*+2} \geq 1) \leq \Pr(Bin(n, \left(\frac{16 \ln n}{n}\right)^2) \geq 1) + \Pr(N_{I^*+1} > 16 \ln n) \)
\(\leq E(Bin(n, \left(\frac{16 \ln n}{n}\right)^2)) + 2/n \leq O(\log^2 n / n) \)
Toss n balls into n bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = $O(\log \log n)$, w.p. 1 - 1/n

Define: N_i = #bins with load i or more

Lemma 1: For any a, $\Pr(N_{i+1} > t | N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)}$

Lemma 2: If $a^2 \geq 6 \ln n/n$ then $\Pr(Bin(n, a^2) > 2na^2) \leq 1/n^2$
If $a^2 < 6 \ln n/n$ then $\Pr(Bin(n, a^2) > 16 \ln n) \leq 1/n^2$

Define: Sequence of a_i values: $a_4 = 1/4 \quad a_{i+1} = 2a_i^2 \quad E_i$ = good event ($N_i \leq a_i n$)

Lemma 3: If $a_i^2 \geq 6 \ln n/n$ then $\Pr(\text{not}(E_{i+1})) \leq (i + 1)/n^2$
Let $I^* = \min_i \{a_i^2 \leq 6 \ln n/n\}$ Then, $\Pr[\text{not}(E_{I^*})] \leq I^*/n^2 \leq 1/n$

Lemma 4: Wp $(1 - \log^2 n/n)$, there are no bins with load $I^* + 2$ or more
Power of Two Choices

Toss \(n \) balls into \(n \) bins. For each ball, we pick two bins u.a.r and put it in the lighter of the two. What is the maximum load of a bin with high probability?

Fact: Max load of a bin = \(O(\log \log n) \), w.p. 1 - 1/\(n \)

Define: \(N_i = \#\text{bins with load } i \text{ or more} \)

Lemma 1: For any \(a \), \(\Pr(N_{i+1} > t | N_i \leq an) \leq \frac{\Pr(Bin(n, a^2) > t)}{\Pr(N_i \leq an)} \)

Lemma 2: If \(a^2 \geq 6 \ln n/n \) then \(\Pr(Bin(n, a^2) > 2na^2) \leq 1/n^2 \)
If \(a^2 < 6 \ln n/n \) then \(\Pr(Bin(n, a^2) > 16 \ln n) \leq 1/n^2 \)

Define: Sequence of \(a_i \) values: \(a_4 = 1/4 \quad a_{i+1} = 2a_i^2 \quad E_i = \text{good event } (N_i \leq a_i n) \)

Lemma 3: If \(a_i^2 \geq 6 \ln n/n \) then \(\Pr(not(E_{i+1})) \leq (i + 1)/n^2 \)
Let \(I^* = \min_i \{a_i^2 \leq 6 \ln n/n\} \) Then, \(\Pr(not(E_{I^*})) \leq I^*/n^2 \leq 1/n \)

** Lemma 4:** Wp \((1 - \log^2 n/n) \), no bins with load \(I^* + 2 \) or more
Can be shown that \(a_i \approx \frac{1}{22^i} \) from which \(I^* = O(\log \log n) \)