Announcements

• Midterm is graded! Please pick up after class
• Midterm average: 45.6/70
• HW3 is up! Due in class Wed May 18
• HW3 is a longer homework (with 4 questions)
Last Class: Algorithms for Max-Flow

\(n = \#\text{vertices}, m = \#\text{edges in } G, C_{\text{max}} = \text{max capacity}, F_{\text{max}} = \text{max flow} \)

Integer edge capacities

- **Ford-Fulkerson**: Running Time = \(O(m F_{\text{max}})\)

- **Other efficient Ford-Fulkerson Style Algorithms**:
 - **Edmonds-Karp**: Running Time = \(O(nm^2)\)
 - **Capacity Scaling**: Running Time = \(O(m^2 \log C_{\text{max}})\)

- **Preflow-Push**: Running Time = \(O(mn^2)\)
Last Class: Bipartite Matching

Given a bipartite graph \(G = (L, R) \), find a matching in \(G \) of maximum cardinality.

Recall: A matching \(M \) is a set of edges \((u, v)\) such that no two edges share a common vertex.

Reduction to Max-Flow:

Graph G:

- Arthur
- Bill
- Charles
- David

Graph H:

- Source \(s \): connected to all nodes in \(L \)
- Sink \(t \): connected to all nodes in \(R \)

Perfect matching: a matching of size \(n \), where \(n = \#\text{vertices in } L = \#\text{vertices in } R \)

Property: Size of max flow in \(H \) = cardinality of maximum matching in \(G \)
Bipartite Matching

• Reduction to Max Flow

• A Faster Algorithm for Bipartite Matching
Bipartite Matching

Graph G:

Arthur
Bill
Charles
David
Angela
Beth
Connie
Doris

L
R

Graph H:

Properties of flow graph H:

- Each edge has capacity 1
- Each node (except s and t) has either indegree 1 or outdegree 1

Such graphs are called unit graphs
Now: a faster algorithm for finding max flows in unit graphs
Blocking Flows

A Blocking Flow of G saturates at least one edge in all s-t paths in G

Example:

A Max Flow is always a Blocking Flow (Why?)
A Blocking Flow may not be a max flow
Blocking Flows Algorithm (Dinic 70)

Blocking Flow Algorithm:
Start with zero flow
Repeat:
 - Let \(H_f \) = subgraph of \(G_f \) containing only admissible edges
 - Find a blocking flow in \(H_f \), and add it to \(f \)

Iteration 1

\(H_f \) (before) \[\begin{array}{ccc}
 s & \rightarrow & a \\
 b & \rightarrow & t
\end{array} \]

\(f \) \[\begin{array}{ccc}
 s & \rightarrow & a & 10^6 \\
 a & \rightarrow & t & 10^6 \\
 s & \rightarrow & b & 10^6 \\
 b & \rightarrow & t & 10^6
\end{array} \]

\(G_f \) (after) \[\begin{array}{ccc}
 s & \rightarrow & a & 10^6 \\
 a & \rightarrow & t & 10^6 \\
 s & \rightarrow & b & 10^6 \\
 b & \rightarrow & t & 10^6
\end{array} \]

A Blocking Flow in \(G \) **saturates at least one edge** in all s-t paths in \(G \)
An edge e in a residual graph \(G_f \) is **admissible** if it lies on a s-t shortest path

Why is this algorithm correct?
Blocking Flows Algorithm (Dinic 70)

Blocking Flow Algorithm:
Start with zero flow
Repeat:
 - Let $H_f = \text{subgraph of } G_f \text{ containing only admissible edges}$
 - Find a blocking flow in H_f, and add it to f

A blocking flow **saturates** ≥ 1 edge in all s-t paths in G

An edge in a residual graph G_f is **admissible** if it lies on some s-t shortest path.

Running Time of Blocking Flow Algorithm in unit graphs $= O(m\sqrt{n})$

Proof Outline:
1. There can be at most $O(\sqrt{n})$ iterations of the blocking flow algorithm in an unit graph
2. Each iteration can be implemented in $O(m)$ time in an unit graph

Recall, in an unit graph:
- Each edge has capacity 1
- Each node (except s and t) has either indegree 1 or outdegree 1
Blocking Flows: Unit Graphs

Blocking Flow Algorithm:
Start with zero flow
Repeat:
 Let H_f = subgraph of G_f containing only admissible edges
 Find a blocking flow in H_f, and add it to f

A blocking flow saturates ≥ 1 edge in all s-t paths in G

An edge in a residual graph G_f is admissible if it lies on some s-t shortest path.

Property: Augmenting along a blocking flow strictly increases the s-t distance in G_f
Before we prove this property, let us look at some properties of shortest paths and H_f
Blocking Flows: Unit Graphs

Blocking Flow Algorithm:
Start with zero flow
Repeat:
 Let $H_f = \text{subgraph of } G_f \text{ containing only admissible edges}$
 Find a blocking flow in H_f, and add it to f

- A blocking flow **saturates** ≥ 1 edge in all s-t paths in G
- An edge in a residual graph G_f is **admissible** if it lies on some s-t shortest path.

Properties of Shortest Paths:

- Let $d(u) = \text{shortest path distance of } u \text{ from } s$
- Layer(i) = all nodes u such that $d(u)=i$
- For any edge (u,v), $d(v) \leq d(u) + 1$
- Edges(u,v): Cannot jump downwards across ≥ 2 layers

Red Edge: Invalid: Cannot be in the graph
Blocking Flows: Unit Graphs

Blocking Flow Algorithm:
Start with zero flow
Repeat:
 Let $H_f = \text{subgraph of } G_f \text{ containing only admissible edges}$
 Find a blocking flow in H_f, and add it to f

Property: Augmenting along a blocking flow strictly increases the s-t distance in G_f

$d_i(u) = \text{SP-distance}(s,u) \text{ at round } i$
A downwards edge can’t jump across >1 layers

A blocking flow **saturates** ≥ 1 edge in **all** s-t paths in G

An edge in a residual graph G_f is **admissible** if it lies on some s-t shortest path.
Blocking Flows: Unit Graphs

Blocking Flow Algorithm:
Start with zero flow
Repeat:
 Let $H_f = \text{subgraph of } G_f \text{ containing only admissible edges}$
 Find a blocking flow in H_f, and add it to f

Property: Augmenting along a blocking flow strictly increases the s-t distance in G_f

Proof: Consider any s-t shortest path in G_f at round $i+1$

A blocking flow saturates ≥ 1 edge in all s-t paths in G

An edge in a residual graph G_f is admissible if it lies on some s-t shortest path.

A downwards edge can't jump across >1 layers

$d_i(u) = \text{SP-distance}(s,u)$ at round i

Layer 0
Layer 1
Layer 2
Layer 3
Layer 4

Proof:

```
\text{i+1} 0 1 2 3 4 5 6
s a b u v w t
```

- **d_i(u)** = SP-distance(s,u) at round i
- A downwards edge can't jump across >1 layers
Blocking Flow Algorithm:

Start with zero flow
Repeat:
 Let H_f = subgraph of G_f containing only admissible edges
 Find a blocking flow in H_f, and add it to f

Property: Augmenting along a blocking flow strictly increases the s-t distance in G_f

Proof: Consider any s-t shortest path in G_f at round $i+1$

A blocking flow **saturates** ≥ 1 edge in all s-t paths in G

An edge in a residual graph G_f is **admissible** if it lies on some s-t shortest path.

$d_i(u) = $ SP-distance(s,u) at round i

A downwards edge can’t jump across >1 layers
Property: Augmenting along a blocking flow strictly increases the s-t distance in G_f

Proof: Consider any s-t shortest path in G_f at round $i+1$

Three kinds of edges $e = (u, v)$ in the path:

1. e in G_f and H_f in round i: $d_{i+1}(v) = d_i(u) + 1$

$d_i(u) = \text{SP-distance}(s, u)$ at round i
A downwards edge can’t jump across >1 layers
Blocking Flows: Unit Graphs

Blocking Flow Algorithm:
Start with zero flow
Repeat:
 - Let $H_f = \text{subgraph of } G_f$ containing only admissible edges
 - Find a blocking flow in H_f, and add it to f

Property: Augmenting along a blocking flow strictly increases the s-t distance in G_f

Proof: Consider any s-t shortest path in G_f at round $i+1$

- **Three kinds of edges** $e = (u, v)$ in the path:
 1. e in G_f and H_f in round i: $d_{i+1}(v) = d_i(u) + 1$
 2. e in G_f but not H_f in round i: $d_{i+1}(v) < d_i(u) + 1$

Layer 0
Layer 1
Layer 2
Layer 3
Layer 4

$\text{A blocking flow saturates} \geq 1 \text{ edge in all s-t paths in } G$

$\text{An edge in a residual graph } G_f \text{ is admissible} \text{ if it lies on some s-t shortest path.}$

$d_i(u) = \text{SP-distance(s,u) at round } i$

A downwards edge can’t jump across > 1 layers
Blocking Flows: Unit Graphs

Blocking Flow Algorithm:
Start with zero flow
Repeat:
- Let $H_f = \text{subgraph of } G_f \text{ containing only admissible edges}$
- Find a blocking flow in H_f, and add it to f

Property: Augmenting along a blocking flow strictly increases the s-t distance in G_f

Proof: Consider any s-t shortest path in G_f at round $i+1$

```
       s
      /   \
 a----b----u----v----w----t
|       |       |       |
0 1  2  3  4  5  6
```

Three kinds of edges $e = (u, v)$ in the path:
1. e in G_f and H_f in round i: $d_i(v) = d_i(u) + 1$
2. e in G_f but not H_f in round i: $d_i(v) < d_i(u) + 1$
3. e not in G_f in round i: (v, u) in H_f in round i: $d_i(u) = d_i(v) + 1$

A downwards edge can’t jump across >1 layers

A blocking flow **saturates** >1 edge in all s-t paths in G

An edge in a residual graph G_f is **admissible** if it lies on some s-t shortest path.
Blocking Flows: Unit Graphs

Property: Augmenting along a blocking flow strictly increases the s-t distance in G_f

Proof: Consider any s-t shortest path in G_f at round $i+1$

<table>
<thead>
<tr>
<th></th>
<th>s</th>
<th>a</th>
<th>b</th>
<th>u</th>
<th>v</th>
<th>w</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>d_{i+1}</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Three kinds of edges $e = (u, v)$ in the path:

1. e in G_f and H_f in round i: $d_i(v) = d_i(u) + 1$
2. e in G_f but not H_f in round i: $d_i(v) < d_i(u) + 1$
3. e not in G_f in round i: (v, u) in H_f in round i: $d_i(u) = d_i(v) + 1$

A downwards edge can't jump across >1 layers.

Blocking Flow Algorithm:

Start with zero flow

Repeat:

- Let $H_f = \text{subgraph of } G_f \text{ containing only admissible edges}$
- Find a blocking flow in H_f, and add it to f

A blocking flow saturates $>=1$ edge in all s-t paths in G

An edge in a residual graph G_f is admissible if it lies on some s-t shortest path.
Blocking Flows: Unit Graphs

Blocking Flow Algorithm:
Start with zero flow
Repeat:
 Let \(H_f = \) subgraph of \(G_f \) containing only admissible edges
 Find a blocking flow in \(H_f \), and add it to \(f \)

Property: Augmenting along a blocking flow strictly increases the s-t distance in \(G_f \)

Proof: Consider any s-t shortest path in \(G_f \) at round \(i+1 \)

Three kinds of edges \(e = (u, v) \) in the path:
1. \(e \) in \(G_f \) and \(H_f \) in round \(i \): \(d_i(v) = d_i(u) + 1 \)
2. \(e \) in \(G_f \) but not \(H_f \) in round \(i \): \(d_i(v) < d_i(u) + 1 \)
3. \(e \) not in \(G_f \) in round \(i \): \((v, u) \) in \(H_f \) in round \(i \): \(d_i(u) = d_i(v) + 1 \)

Thus, \(d_i(t) \leq d_{i+1}(t) \). Equal only if all blue edges. But then, the path is in \(H_f \) in round \(i \), which can't be due to blocking flow!
Blocking Flows: Unit Graphs

Property 1: Augmenting along a blocking flow f increases the s-t distance in the residual graph G_f.

Property 2: After d iterations of blocking flow, $\text{size}(\text{max flow}) \leq \text{size}(\text{current flow}) + \frac{n}{d}$.

Blocking Flow Algorithm:

Start with zero flow

Repeat:

1. Let $H_f = \text{subgraph of } G_f \text{ containing only admissible edges}$
2. Find a blocking flow in H_f, and add it to f
Blocking Flows: Unit Graphs

Blocking Flow Algorithm:
Start with zero flow
Repeat:
 - Let $H_f =$ subgraph of G_f containing only admissible edges
 - Find a blocking flow in H_f, and add it to f

Property 1: Augmenting along a blocking flow f increases the s-t distance in the residual graph

Property 2: After d iterations of blocking flow, size(max flow) \leq size(current flow) + n/d

Proof: After d iterations of blocking flow, any s-t path in residual graph is at least d edges long
Since G_f is a unit graph, each such s-t path has to involve a disjoint set of vertices
Thus there can be at most n/d more such augmenting paths
Blocking Flows: Unit Graphs

Blocking Flow Algorithm:
Start with zero flow
Repeat:
 Let $H_f = \text{subgraph of } G_f \text{ containing only admissible edges}$
 Find a blocking flow in H_f, and add it to f

- A blocking flow **saturates** ≥ 1 edge in all s-t paths in G
- An edge in a residual graph G_f is **admissible** if it lies on some s-t shortest path.

Property 1: Augmenting along a blocking flow f increases the s-t distance in the residual graph

Property 2: After d iterations of blocking flow, $\text{size}(\text{max flow}) \leq \text{size}(\text{current flow}) + \frac{n}{d}$

Property 3: The total number of iterations of blocking flow is at most $O(\sqrt{n})$

Proof: In property 2, set $d = \sqrt{n}$ and use the fact that $\text{size}(\text{max flow}) \leq n$
Blocking Flows Algorithm (Dinic 70)

Blocking Flow Algorithm:
Start with zero flow
Repeat:
 Let $H_f = \text{subgraph of } G_f \text{ containing only admissible edges}$
 Find a blocking flow in H_f, and add it to f

A blocking flow saturates ≥ 1 edge in all s-t paths in G

An edge in a residual graph G_f is admissible if it lies on some s-t shortest path.

Running Time of Blocking Flow Algorithm in unit graphs $= O(m\sqrt{n})$

Proof Outline:
1. There can be at most $O(\sqrt{n})$ iterations of the blocking flow algorithm in an unit graph
2. Each iteration can be implemented in $O(m)$ time in an unit graph

Recall, in an unit graph:
- Each edge has capacity 1
- Each node (except s and t) has either indegree 1 or outdegree 1
Blocking Flows in Unit Graphs: Implementing a Single Iteration

Blocking Flow Algorithm:
Start with zero flow
Repeat:
 Let $H_f = \text{subgraph of } G_f \text{ containing only admissible edges}$
 Find a blocking flow in H_f, and add it to f

A blocking flow saturates ≥ 1 edge in all s-t paths in G

An edge in a residual graph G_f is admissible if it lies on some s-t shortest path.

To find a blocking flow, successively find s-t paths in H_f and delete them.
To find an s-t path, start from s and use **two operations** until we hit t:
Blocking Flows in Unit Graphs: Implementing a Single Iteration

Blocking Flow Algorithm:
Start with zero flow
Repeat:
 Let \(H_f = \) subgraph of \(G_f \) containing only admissible edges
 Find a blocking flow in \(H_f \), and add it to \(f \)

To find a blocking flow, successively find s-t paths in \(H_f \) and delete them.
To find an s-t path, start from s and use **two operations** until we hit t:

<table>
<thead>
<tr>
<th>Current</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Advance: Current vertex = v. If v is not t, and there is an outgoing edge (v, u), add (v, u) to current path, and set current vertex = u.
Blocking Flows in Unit Graphs: Implementing a Single Iteration

Blocking Flow Algorithm:
- Start with zero flow
- Repeat:
 - Let $H_f = \text{subgraph of } G_f \text{ containing only admissible edges}$
 - Find a blocking flow in H_f, and add it to f

To find a blocking flow, successively find s-t paths in H_f and delete them.

To find an s-t path, start from s and use **two operations** until we hit t:

- **Advance:** Current vertex = v. If v is not t, and there is an outgoing edge (v, u), add (v, u) to current path, and set current vertex = u.

- **Retreat:** Current vertex = v. If v is not t, and no outgoing edge (v, u), delete previous edge on current path, and retreat to previous vertex.
Blocking Flows in Unit Graphs: Implementing a Single Iteration

A blocking flow saturates \(\geq 1 \) edge in all s-t paths in \(G \).

An edge in a residual graph \(G_f \) is admissible if it lies on some s-t shortest path.

To find a blocking flow, successively find s-t paths in \(H_f \) and delete them.

To find an s-t path, start from s and use two operations until we hit t:

Advance: Current vertex = \(v \). If \(v \) is not t, and there is an outgoing edge \((v, u)\), add \((v, u)\) to current path, and set current vertex = \(u \).

Retreat: Current vertex = \(v \). If \(v \) is not t, and no outgoing edge \((v, u)\), delete previous edge on current path, and retreat to previous vertex.

Blocking Flow Algorithm:
- Start with zero flow
- Repeat:
 - Let \(H_f = \) subgraph of \(G_f \) containing only admissible edges
 - Find a blocking flow in \(H_f \), and add it to \(f \)

Total time to find a blocking flow = \(O(m) \) (each edge is examined at most \(O(1) \) times)
Blocking Flows Algorithm (Dinic 70)

Blocking Flow Algorithm:
Start with zero flow
Repeat:
 Let $H_f = \text{subgraph of } G_f \text{ containing only admissible edges}$
 Find a blocking flow in H_f, and add it to f

A blocking flow **saturates** ≥ 1 edge in all s-t paths in G

An edge in a residual graph G_f is **admissible** if it lies on some s-t shortest path.

Running Time of Blocking Flow Algorithm in unit graphs = $O(m\sqrt{n})$

Proof Outline:
1. There can be at most $O(\sqrt{n})$ iterations of the blocking flow algorithm in an unit graph
2. Each iteration can be implemented in $O(m)$ time in an unit graph

Recall, in an unit graph:
- Each edge has capacity 1
- Each node (except s and t) has either indegree 1 or outdegree 1
Bipartite Matching

Properties of flow graph H:

- Each edge has capacity 1
- Each node (except s and t) has either indegree 1 or outdegree 1

Such graphs are called **unit graphs**

Running time of blocking flow algorithm on unit graphs = \(O(m\sqrt{n}) \)

Thus, time to compute bipartite matching = \(O(m\sqrt{n}) \)
Bipartite Matching

• Reduction to Max Flow

• A Faster Algorithm for Bipartite Matching