Human Visual System

Introduction to Computer Vision
CSE 152
Lecture 4
Announcements

• Lectures to remain in this room.
• Discussion section: Wed 1:00-1:50, WLH 2204

• HW0 due today
• HW1 will be posted shortly
Coordinate Changes: Rigid Transformations

\[B\mathbf{P} = B\mathbf{R}^A\mathbf{P} + B\mathbf{O}_A \]
Homogeneous Representation of Rigid Transformations

\[
\begin{bmatrix}
^B P \\
1
\end{bmatrix} = \begin{bmatrix}
^B R & ^B O_A \\
0^T & 1
\end{bmatrix} \begin{bmatrix}
^A P \\
1
\end{bmatrix} = ^B T \begin{bmatrix}
^A P \\
1
\end{bmatrix}
\]

Transformation represented by 4 by 4 Matrix

Block Matrix Multiplication

Given

\[
A = \begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix} \quad B = \begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}
\]

What is \(AB\) ?

\[
AB = \begin{bmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{bmatrix}
\]
Camera parameters

• Issue
 – camera may not be at the origin, looking down the z-axis
 • extrinsic parameters (Rigid Transformation)
 – one unit in camera coordinates may not be the same as one unit in world coordinates
 • intrinsic parameters - focal length, principal point, aspect ratio, angle between axes, etc.

\[
\begin{pmatrix}
U \\
V \\
W
\end{pmatrix} = \begin{pmatrix}
\text{Transformation} & 1 & 0 & 0 & 0 \\
\text{representing} & 0 & 1 & 0 & 0 \\
\text{intrinsic parameters} & 0 & 0 & 1 & 0
\end{pmatrix} \begin{pmatrix}
X \\
Y \\
Z \\
T
\end{pmatrix}
\]

3 x 3 \quad 4 x 4
A price: Whereas the image of P is in focus, the image of Q isn’t.
Deviations from the lens model

Deviations from this ideal are *aberrations*

Two types

1. geometrical
 - spherical aberration
 - astigmatism
 - distortion
 - coma

2. chromatic

Aberrations are reduced by combining lenses

![Compound lenses](image)
Kepler

Kepler, 1604

Eye as an optical instrument

Image is inverted on retina

First such experiment by Scheiner, 1625

Figure 2.1 Image formation on the retina, according to Descartes. Descartes removed the eye of an ox, scraped its back to make it transparent, and then observed on it from a darkened room “not perhaps without wonder and pleasure” the inverted image of a scene (see [Frenne 1967]). Such an experiment was performed originally by Scheiner, first with the eyes of sheep and oxen, and then, in 1625, with a human eye; the formation of an inverted retinal image was proposed by Kepler in 1604 (see [Polyak 1957]). (From Descartes’s *La Dioptrique*, 1637.)
Ways to study human vision

1. Physiologically
2. Phenomenological/Psychophysical
3. Cellular recordings
4. Functional MRI
5. Computational modelling
Physiological level
What does this do?

Can we readily understand whole from understanding pieces?
Ways to study human vision

1. Physiologically
2. Phenomenological/Psychophysical
3. Cellular recordings
4. Functional MRI
5. Computational modelling
Psychophysical Testing of Subjects
Example:
Show gratings w/ different spatial frequencies

2) Spatial Frequency (cycles/deg)
Gradients/Motion
Perceptual Organization

Occlusion provides a different organization
Perceptual Organization
Ways to study human vision

1. Physiologically
2. Phenomenological/Psychophysical
3. Cellular recordings
4. Functional MRI
5. Computational modeling
Single Cell Recordings

6.12 DIRECTION SELECTIVITY of a cortical neuron's response. The left-hand portion of each panel shows the receptive-field location, the orientation of the line stimulus, and the two motion directions. The action potentials shown on the right are the neuron's response to motion in each of the two opposite directions. The neuron's response depends upon the direction of motion and the orientation of the line. After Hubel and Wiesel, 1968.
fMRI

Activation in the right fusiform gyrus.
[Tarr, Cheng 2003]
Ways to study human vision

1. Physiologically
2. Phenomenological/Psychophysical
3. Cellular recordings
4. Functional MRI
5. Computational modeling
Computational Modeling

What is being computed and why?
The range of lighting

- Direct sun: 100,000 Lux
- Sunny day: 50,000 Lux
- Cloudy day: 5,000 Lux
- Office: 400 Lux
- Home lighting: 10 Lux
- Street lamps: 1 Lux
- Full moon: 0.1 Lux
- Quarter moon: 0.01 Lux
- Clear moonless night: 0.001 Lux
- Cloudy moonless night: 0.0001 Lux
3.4 THE SPATIAL MOSAIC OF THE HUMAN CONES. Cross sections of the human retina at the level of the inner segments showing (A) cones in the fovea, and (B) cones in the periphery. Note the size difference (scale bar = 10 μm), and that, as the separation between cones grows, the rod receptors fill in the spaces. (C) Cone density plotted as a function of distance from the center of the fovea for seven human retinas; cone density decreases with distance from the fovea. Source: Curcio et al., 1990.
Rods & Cones
Three types of cones: R, G, B

Response of k’th cone = \(\int \rho_k(\lambda)E(\lambda)d\lambda \)

There are three types of cones
- S: Short wave lengths (Blue)
- M: Mid wave lengths (Green)
- L: Long wave lengths (Red)

- Three attributes to a color
- Three numbers to describe a color
3.1 THE DISTRIBUTION OF ROD AND CONE PHOTORECEPTORS across the human retina. (A) Degrees of visual angle relative to the position of the fovea for the left eye; the position of the blind spot is also shown. (B) The cone receptors are concentrated in the fovea. The rod photoreceptors are absent from the fovea and reach their highest density between 10 and 20 degrees peripheral to the fovea. No photoreceptors are present in the blind spot.
Retina edge on
5.2 RETINAL NEURONS have many different shapes and sizes. (A) The cell body of a bipolar cell resides in the outer nuclear layer. Its dendrites make contact with the photoreceptors and horizontal cells and its axon carries the output of the bipolar cell to the inner plexiform layer (see Figure 5.1), where it contacts the dendritic field of a ganglion cell. (B) The retinal ganglion cell bodies reside in the ganglion cell layer of the retina (see Figure 5.1). The axons of the retinal ganglion cells comprise the optic nerve. Several types of retinal ganglion cells can be distinguished based on the properties of their dendritic fields, their interconnections, and their cell bodies. The cell shown here was called a parasol cell by Stephen Polyak (1941, 1957). Sources: A from Yamashita and Wässle, 1991; B from Dacey and Petersen, 1992.
Other Eyes
Trilobite Visual System

• Most ancient known visual system.
• Compound eye with single crystal for each lens.

Electron Micrograph of Holochroal eye

Good trilobite eye info at: http://www.aloha.net/~smgon/eyes.htm
Scallop eyes

- Hundreds of primitives eyes, mirror in back
- Changes in light and motion and very rough images are registered on the retinas of the mollusk.
- Nice material at: http://soma.npa.uiuc.edu/courses/bio303/Ch11b.html
Stomatopod eyes

• Dumb bell shaped, compound eyes
• Stereo vision with just one eye;
• Each eye is up on a stalk, with a wide range of motion;
• Stomatopods have up to 16 visual pigments stomatopods can also see ultra-violet and infra-red light, and some can even see polarized light.
• See http://www.ucmp.berkeley.edu/aquarius/
Visual Pathways
Single Cell Recordings

6.12 DIRECTION SELECTIVITY of a cortical neuron’s response. The left-hand portion of each panel shows the receptive-field location, the orientation of the line stimulus, and the two motion directions. The action potentials shown on the right are the neuron’s response to motion in each of the two opposite directions. The neuron’s response depends upon the direction of motion and the orientation of the line. After Hubel and Wiesel, 1968.
6.23 AN ANATOMICAL/PERCEPTUAL MODEL OF THE VISUAL CORTEX. In this speculative model, visual streams within the cortex are identified with specific perceptual features. The anatomical streams are identified using anatomical markers; the perceptual properties are associated with the streams by applying the neuron doctrine. Source: Livingstone and Hubel (1988).
CUES
Fixate at center
What color are the dots
Subjective Contours
Kanizsa’s Triangle
Shading Cues
Which square is darker?