

Background

- Developed in 1930’s by Alonzo Church
 - studied in logic and computer science

- Test bed for programming languages
 - Simple, Powerful, Extensible

“Whatever the next 700 languages turn out to be, they will surely be variants of lambda calculus” (Landin ‘66)

Syntax

- Three kinds of expressions (terms):
 - $e ::= x$ Variables
 - $\lambda x.e$ Functions (λ-abstraction)
 - $e_1 e_2$ Application

- $\lambda x.e$ is a one-argument function with body e
- $e_1 e_2$ is a function application

- Application associates to the left:
 - $x y z$ means $(x y) z$

- Abstraction extends to the right as far as possible:
 - $\lambda x. \lambda y. z$ means $\lambda x.(\lambda y.(z))$

Examples of Lambda Expressions

- The identity function:
 - $\lambda x. x$

- A function that given an argument y discards it and returns the identity function:
 - $\lambda y. (\lambda x. x) y$

- A function that given a function f invokes it on the identity function:
 - $f (\lambda x. x)$
Free and Bound Variables

- Variable “shadowing”
 - Different occurrences of var may refer to different values

- E.g., in ML: let x = E in x + (let x = E' in x) + x

- In lambda calculus: \(\lambda x. (\lambda x. x) x \)

Renaming Bound Variables

\(\alpha \)-renaming:

- \(\lambda \)-terms after renaming bound var occurrences
- Considered identical to original

Example: \(\lambda x. x \) is identical to \(\lambda y. y \) and to \(\lambda z. z \)

Rename bound variables so names unique

- E.g., write \(\lambda x. x (\lambda y. y) x \) instead of \(\lambda x. x (\lambda x. x) x \)

- Easy to see the scope of bindings

Substitution

\([E'/x] E \) : Substitution of \(E' \) for \(x \) in \(E \)

1. Uniquely rename bound vars in \(E \) and \(E' \)
2. Do textual substitution of \(E' \) for \(x \) in \(E \)

Example: \([y (\lambda x. x)/x] \lambda y. (\lambda x. x) y x \)

1. After renaming: \([y (\lambda v. v)/x] \lambda z. (\lambda u. u) z x \)
2. After substitution: \(\lambda z. (\lambda u. u) z (y (\lambda v. v)) \)

Informal Semantics

The evaluation of \((\lambda x. e) e' \)

1. binds \(x \) to \(e' \)
2. evaluates \(e \) with the new binding
3. yields the result of this evaluation

Like \(\text{let } x = e' \text{ in } e \)

Example: \((\lambda f. f (f e)) g \) evaluates to \(g (g e) \)
Another View of Reduction

The application becomes:

\(\lambda x. x\) \(x\) \(x\) \(e\) \(e'\) \(e'\) \(e'\) \(e\)

Terms can grow substantially by reduction

Examples of Evaluation

- The identity function:
 \((\lambda x. x) E\)
 \(\Rightarrow [E / x] x\)
 \(\Rightarrow E\)

- Another example with the identity:
 \((\lambda f. f (\lambda x. x)) (\lambda x. x)\)
 \(\Rightarrow [\lambda x. x / f] f (\lambda x. x)\)
 \(\Rightarrow [(\lambda x. x) / f] f (\lambda y. y)\)
 \(\Rightarrow (\lambda x. x) (\lambda y. y)\)
 \(\Rightarrow (\lambda y. y) (\lambda x. x)\)
 \(\Rightarrow \lambda y. y\)

Examples of Evaluation

- \((\lambda x. x x)(\lambda y. y y)\)
 \(\Rightarrow [\lambda y. y y / x] x x\)
 \(\Rightarrow (\lambda y. y y)(\lambda y. y y)\)
 \(\Rightarrow (\lambda x. x x)(\lambda y. y y)\)
 \(\Rightarrow \ldots\)
 A non-terminating evaluation!

Next

“Programming” with the \(\lambda\)-Calculus
Programming with the λ-calculus

How does the λ-calculus relate to “real” programming languages?

- Bools / If-then-else?
- Records
- Integers?
- Recursion?
- Functions (well, those we have ...)

Encoding Booleans in λ-calculus

Q: What can we do with a boolean?
A: Make a binary choice

Q: So, how can you view this as a “function”?
A: Bool = fun that takes two choices, returns one
- true =def λx. λy. x
- false =def λx. λy. y
- if E1 then E2 else E3 =def E1 E2 E3

Example: “if true then u else v” is
(λx. λy. x) u v ®β (λy. u) v ®β u

Boolean Operations

Boolean operations: not
Function takes b:

returns function takes x,y:

not =def λb. (λx. λy. b y x)

Boolean operations: or
Function takes b1, b2:

returns function takes x,y:

or =def λb1. λb2. (λx. λy. b1 x (b2 x y))

Programming with the λ-calculus

How does the λ-calculus relate to “real” programming languages?

- Bools / If-then-else?
- Records
- Integers?
- Recursion?
- Functions (well, those we have ...)
Encoding Pairs (and so, Records)

Q: What can we do with a pair?
A: We can select one of its elements

Pair: function takes a bool, returns the left or the right element

\[
\text{mkpair } e_1 e_2 = \lambda b. b e_1 e_2
\]

Note: “pair” encoded as \(\lambda\)-abstraction, “waiting” for bool

\[
\text{fst } p = \text{def } p \text{ true}
\]
\[
\text{snd } p = \text{def } p \text{ false}
\]

Ex: \(\text{fst (mkpair } x y) \mapsto (\text{mkpair } x y) \text{ true} \mapsto \text{true } x y \mapsto x\)

Programming with the \(\lambda\)-calculus

How does the \(\lambda\)-calculus relate to “real” programming languages?

• Bools / If-then-else?
• Records
• Integers?
• Recursion?
• Functions (well, those we have …)

Encoding Natural Numbers

Q: What can we do with a natural number?
A: Iterate a number of times over some function

Nat: function that takes fun \(f\), starting value \(s\):
returns: \(f\) applied to \(s\) a number of times

\[
0 = \text{def } \lambda f. \lambda s. s
\]
\[
1 = \text{def } \lambda f. \lambda s. f s
\]
\[
2 = \text{def } \lambda f. \lambda s. f (f s)
\]

M

Called Church numerals, unary representation

Note: \((n f s)\) : apply \(f\) to \(s\) “\(n\)” times, i.e. \(f^n(s)\)

Operating on Natural Numbers

• Testing equality with 0
 \(\text{iszero } n = \text{def } n (\lambda b. \text{false}) \text{ true}\)
 \(\text{iszero } n = \text{def } \lambda n. (n (\lambda b. \text{false}) \text{ true})\)
• The successor function
 \(\text{succ } n = \text{def } \lambda f. \lambda s. f (n f s)\)
 \(\text{succ } n = \text{def } \lambda f. \lambda s. f (n f s)\)
• Addition
 \(\text{add } n_1 n_2 = \text{def } \lambda n. n_1 n_2 n\) \text{ succ } n\)
• Multiplication
 \(\text{mult } n_1 n_2 n = \text{def } n_1 (n_2 n) 0\)

Ex: Computing with Naturals

What is the result of \texttt{add 0}?

\texttt{(\lambda n_1. \lambda n_2. \ n_1 \ succ \ n_2) \ 0}
\implies \texttt{\lambda n_2. \ 0 \ succ \ n_2}
\implies \texttt{\lambda n_2. \ (\lambda f. \ \lambda s. \ s) \ succ \ n_2}
\implies \texttt{\lambda x. \ x}

Programming with the \(\lambda\)-calculus

How does the \(\lambda\)-calculus relate to “real” programming languages?

• Bools / If-then-else?
• Records
• Integers?
• Recursion?
• Functions (well, those we have …)

Encoding Recursion

• Write a function \texttt{find} that:
 takes “predicate” \(P\), “natural” \(n\) returns:
 smallest natural
 larger than \(n\)
 satisfying \(P\)

\begin{align*}
\texttt{find} \ P \ n & = \text{if } P \ n \ \text{then } n \ \text{else } \texttt{find} \ P \ (\texttt{succ} \ n) \\
\texttt{find} & \text{ satisfies the equation:} \\
\texttt{F} & \text{ is a fixpoint of } \texttt{F}\end{align*}

• Define: \(F = \lambda f. \lambda p. \lambda n. \left[p \ n \right] \ n \ \left[f (\texttt{succ} \ n) \right] \)

• A fixpoint of \(F\) is an \(x\) s.t. \(x = F \ x\)

• \texttt{find} is a fixpoint of \(F\)!

- as \texttt{\texttt{find} \ P \ n = \texttt{F} \ \texttt{find} \ P \ n}
- so \texttt{\texttt{find} = \texttt{F} \ \texttt{find}}
The Y-Combinator

Define: \(Y = \text{def} \lambda F. (\lambda y. F(y y)) (\lambda x. F(x x)) \)

- Called the fixpoint combinator as...
 - \(Y F \)
 - \(= (\lambda y. F(y y)) (\lambda x. F(x x)) \)
 - \(= F ((\lambda x. F(x x))(\lambda z. F(z z))) \)
 - \(= F (Y F) \)
 - i.e. \(Y F = Y F \)

- Can get fixpoint for any \(\lambda \)-calculus function

Whoa!

Define: \(F = \lambda f. \lambda p. \lambda n. (p n) n (f p (\text{succ} n)) \)

and: \(\text{find} = Y F \)

What's going on?

\(\text{find} p n \)
 - \(= Y F p n \)
 - \(= F (Y F) p n \)
 - \(= F \text{find} p n \)
 - \(= (p n) n (\text{find} p (\text{succ} n)) \)

Many other fixpoint combinators

Including those that work for CBV

Including Klop's Combinator:

\(Y_k = \text{def} L \)

where:

\(L = \text{def} (\text{this is a fixpoint combinator}) \)

Programming with the \(\lambda \)-calculus

How does the \(\lambda \)-calculus relate to “real” programming languages?

- Bools / If-then-else?
- Records
- Integers?
- Recursion?
- Functions (well, those we have ...)
That's all folks!

- Hope 130 taught you something …
 - … many ways of computational thinking

- Good luck for final
 - On Monday
 - Review Session: Sun 5-7, CSE 4140

- Want more?
 - CSE 230 (Winter 2012)