Multiplication in Three Pieces: 20 pts. In class, we saw a divide and conquer algorithm for multiplication that divided each n bit integer into high and low positions, each $n/2$ bits long. Consider algorithms that break the integers up into three pieces instead, the high order, mid order, and low order pieces, each $n/3$ bits long. What is the best divide-and-conquer multiplication algorithm of this type you can find? Is it better or worse than the two piece algorithm from class?

Least Common Ancestor: 20 points Consider the following recursive algorithm that takes as input a binary tree T.

Each non-leaf in T, x, has left-child $x.left$, and right child $x.right$, and each non-root has parent $x.parent$. (Child pointers at leaves and the parent pointer at the root return NIL). It uses a depth-first search procedure DFS that is linear-time in the size of the sub-tree and returns the list of nodes in the sub-tree. It computes, for each pair of nodes x and y in T, the deepest node that is an ancestor of both x and y, and stores it in an array $LCA[x, y]$. The main idea is that if x is in the left sub-tree of the root, and y is in the right sub-tree, then the least common ancestor is the root. Otherwise, the least common ancestor is in the sub-tree that contains both x and y.

LeastCommonAncestor$(r: \text{node})$

1. $LCA[r, r] \leftarrow r$
2. IF $r.left \neq \text{NIL}$ THEN
3. LeastCommonAncestor$(r.left)$;
4. $L_1 \leftarrow DFS(r.left)$;
5. IF $r.right \neq \text{NIL}$ THEN
6. LeastCommonAncestor$(r.right)$;
7. $L_2 \leftarrow DFS(r.right)$.
8. FOR each $x \in L_1$
9. FOR each $y \in L_2$
10. $LCA[x, y] \leftarrow r$

First, give a recurrence relation for the time of this algorithm when the input is a complete binary tree of size $n = 2^d - 1$, where d is the depth of the tree. (Note that such a complete binary tree is always perfectly
balanced, with left and right sub-trees of the same size.), and solve it to
give a time analysis for the algorithm in the complete binary tree case.
Then give a worst-case analysis for the time, not making any assumptions
about the input tree.

Triangle A triangle in an undirected graph \(G \) is a triple of nodes \(u, v, w \) so that
any two of them are adjacent in the graph. Use Strassen’s \(O(n^\log_2 7) \) time
matrix multiply algorithm to determine whether an undirected graph, in
adjacency matrix format, has a triangle, in the same order of time.

Back-tracking: Hamiltonian path Consider the following algorithm for de-
ciding whether a graph has a Hamiltonian Path from \(x \) to \(y \), i.e., a simple
path in the graph from \(x \) to \(y \) going through all the nodes in \(G \) exactly
once. \((N(x) \) is the set of neighbors of \(x \), i.e. nodes directly connected to
\(x \) in \(G \).

1. \(\text{HamPath}(G, x : \text{node}, y : \text{node}) \)
2. If \(x = y \) is the only node in \(G \) return \(\text{True} \).
3. If no node in \(G \) is connected to \(x \), return \(\text{false} \).
4. For each \(z \in N(x) \) do:
5. If \(\text{HamPath}(G - \{x\}, z, y) \), return \(\text{true} \).
6. Return \(\text{false} \)

a. Explain (informally) why this algorithm is correct. (5 points) b. If
every node of the graph \(G \) has degree (number of neighbors) at most 3,
how long will this algorithm take at most? (15 points) (Hint: you can get
a tighter bound than the most obvious one.)

Implementation: 20 pts Implement the \(O(n^\log_2 3) \) time divide-and-conquer
multiplication algorithm from class, and the grade-school multiplication
algorithm. Plot the average times to multiply \(n \) bit numbers using the two
methods (on log-log scales). When is the divide-and-conquer algorithm
better? Then consider a hybrid algorithm, where you replace the base-
case of the recursion with the grade-school method for inputs of size less
than some threshold \(T \). Experimentally determine the best value of \(T \).