1 Space (Memory) Complexity

We assume that the input is read only, and that the output is write only, and we don’t count either as part of the memory (space) usage.

Lemma 1. If \(f \) and \(g \) are functions computable in \(\text{DSpace}(S(n)) \), then \(g \circ f = g(f(x)) \in \text{DSpace}(\exp(S(n))) \).

Corollary 1. If \(f \) and \(g \) are functions computable in \(L = \text{DSpace}(\log n) \) then \(g \circ f \in L = \text{DSpace}(\log n) \).

Suppose we first run a machine for \(f \) to compute \(f(x) \) on its output tape, and then use this same tape as the input to \(g \). The output tape doesn’t count as memory used by \(f \), and it doesn’t count as memory used by \(g \), but it does count as memory used by a machine which computes \(g \circ f \) using this approach. Thus, this approach may well use too much space.

Instead, use two additional counters: one to store the position on the output tape of \(f \), and one to store the position on the input tape of \(g \).

Lemma 2. If any space \(S(n) \geq \log n \) algorithm runs for more than \(\exp(S(n)) \) time, then it doesn’t terminate.

Proof. The number of configurations is at most \(\exp(S(n)) \). If we run for more than the number of configurations steps, then we must be in the same configuration twice, and therefore will repeat the same sequence of steps forever.

Corollary 2. \(\text{DSpace}(S(n)) \subseteq \text{DTIME}(\exp(O(S(n)))) \) for \(S(n) \geq \log n \).

Corollary 3. If \(f \in \text{DSpace}(S(n)) \) for \(S(n) \geq \log n \), then \(|f(x)| \leq \exp(O(S(n))) \).

Returning to the simulation of \(g \circ f \): Simulate \(g(y) \) where we think of \(y = f(x) \), keeping track of the position \(i \) of the position of the input tape head for \(g \). Every time that we need the value of \(y_i \), we compute \(f(x) \) from scratch until it outputs the \(i \)th bit. Then resume the simulation of \(g \). Since we reuse the same memory for each simulation of \(f \) it uses a total of \(S(n) \) space. Simulating \(g \) uses space \(S(|f(x)|) \leq S(\exp(S(n))) \), and space \(O(S(n)) \) to keep track of the position of the tape heads. Thus, we conclude Lemma 1.

2 Reductions

For languages \(A \) and \(B \), a log-space mapping reduction from \(A \) to \(B \), written \(A \leq_{ml} B \), is a function \(f \in L \) such that \(x \in A \iff f(x) \in B \). From Lemma 1, if \(A \leq_{ml} B \) and \(B \in L \) then \(A \in L \). Also from Lemma 1, if \(A \leq_{ml} B \) and \(B \leq_{ml} C \) then \(A \leq_{ml} C \).
Given a notion of reduction, we can define a notion of completeness.

Consider the language Directed Graph Reachability, \(DGR = \{ (G, u, v) \mid \text{there is a directed path from } u \text{ to } v \text{ in the graph } G = (V, E), \text{ represented by an adjacency matrix} \} \).

Theorem 1. \(DGR \) is \(NL \)-complete under \(\leq_{mL} \) reductions.

Proof. First, \(DGR \in NL \): We store in memory a vertex \(a \in V \) and maintain the invariant that along an non-rejecting computation path there exists a path in \(G \) from \(u \) to \(a \). Begin with \(a = u \). If \(a = v \) accept. Non-deterministically choose \(b \in V \). If \((a, b) \notin E \) reject, otherwise set \(a = b \) and continue. If we run for more than \(|V|\) steps, reject.

This algorithm uses \(\log n \) space for \(a \), \(\log n \) space for \(b \), and \(\log n \) space to count steps, for a total of \(O(\log n) \) memory.

If there exists a path in \(G \) from \(u \) to \(v \), then there exists a path from \(u \) to \(v \) without any cycles of length at most \(|V|\). When the algorithm non-deterministically chooses the vertices along this path it will accept.

If the algorithm accepts, then the sequence of values for \(a \) must correspond to a path from \(u \) to \(v \) in \(G \).

Second, we must show that for all \(A \in L \) we have \(A \leq_{mL} DGR \): We will construct a graph where vertices correspond to configurations of a machine for \(A \), \(u \) is the initial configuration, and \(v \) is a fixed accepting configuration, say with all tapes erased and in a specific accepting state; and where edges correspond to valid non-deterministic transitions between configurations.

Formally, let \(M \) be a non-deterministic log-space TM for \(A \) (which erases it’s tapes, etc. before accepting), and let \(x \) be any input to \(M \). \(V = \) set of all configurations of \(M \) on inputs of length \(n \). \(|V| = \text{poly}(n)\) and each \(v \in V \) has an \(O(\log n) \) bit representation. \(E = \{ (c_1, c_2) \mid M \text{ can go from configuration } c_1 \text{ to } c_2, \text{ on input } x, \text{ in one step} \} \). For each pair \(c_1, c_2 \) of \(O(\log n) \) bit configurations, using an \(O(\log n) \) bit counter for the \(i^{th} \) bit of \(x \), we can compute whether \((c_1, c_2) \in E \) straightforwardly in log-space.

The output is \(\langle G = (V, E), u, v \rangle \) where \(u \) is the start configuration and \(v \) is the unique accept configuration.

By construction (essentially) there is a path from \(u \) to \(v \) in \(G \) if and only if there is an accepting computation of \(M \) on input \(x \) if and only if \(x \in A \). \(\square \)

4 \ Relationship to Time

It follow directly from Theorem 1 that \(NL \subseteq P \). For any \(A \in NL \), there exists \(f \in L \) such that \(x \in A \iff f(x) \in DGR \). Since \(f \in L \), we know \(f \in FP \). Therefore \(A \leq_{mp} DGR \) and \(DGR \in P \), so \(A \in P \).

\(L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \). By diagonalization similar to the time hierarchy theorem, we know \(L \subset PSPACE \). We will show \(NL \subset PSPACE \), but we don’t know which of the other inclusions are proper.

5 \ \(NSPACE(S(n)) \subseteq DSPACE(S(n)^2) \)

Theorem 2 (Savitch’s Theorem). \(NSPACE(S(n)) \subseteq DSPACE(S(n)^2) \) for \(S(n) \geq \log n \)

Corollary 4. \(NL \subseteq DSPACE(\log^2 n) \)

Proof. From Theorem 1, we know \(DGR \) is \(NL \)-complete. Thus, if we give a \(DSPACE(\log^2 n) \) algorithm for \(DGR \) we can conclude that \(NL \subseteq DSPACE(\log^2 n) \).

1. Begin with \(\ell = n \)
2. Savitch\((G, u, v, \ell)\):
3. For each \(a \in V \) do:
4. \(\text{Savitch}(G, u, a, \ell/2) \)
5. If so, erase your memory except a and try
6. \text{Savitch}(G, a, v, \ell/2)$
7. If so, accept

Each level of recursion uses $O(\log n)$ memory, and we have $\log n$ levels of recursion for a total of $O(\log^2 n)$ memory. (We have omitted a few details from the algorithm concerning base cases, etc. but the omitted details don’t change anything.)

Savitch’s Theorem for space $S(n) > \log n$ follows the same outline for appropriately adjusted space. \hfill \square