CSE 200
Computability and Complexity
Homework 2
NP, Completeness, and Reductions
Due Monday, May 10

April 26, 2010

Give proofs for each problem. Proofs can be high-level, but be precise. You may use without giving a proof any result proved in class or in the textbook. In particular, to prove NP-completeness, it suffices to give a reduction from any of the NP-complete problems from the text or from class. However, you must show your reduction is valid, by showing the equivalence of the constructed instance and the original.

Restricted 3-SAT Show that the 3-SAT problem remains \(\text{NP} \)-complete when restricted to formulas where each variable appears at most 3 times. (Hint: remember that you can use smaller clauses than size 3.)

Independent Set Maximality (ISM) Prove that the following problem is \(\text{NP} \)-complete. Given a graph \(G \) and an independent set \(I \) in \(G \), is there a larger independent set \(I' \), \(|I| < |I'| \)?

Abstract tiling Consider the abstract tiling problem shown non-computable in class, but where in addition to the set of tiles \(T \), you have an additional input \(B \) representing the dimension of the square to be tiled, i.e., is there a \(B \times B \) matrix so that the borders are the special border symbols and all \(2 \times 3 \) consecutive submatrices are in \(T \)? Prove that this problem is \(\text{NP} \)-complete. (Hint: it may be easier to reduce directly from a Turing Machine than to reduce a known \(\text{NP} \)-complete problem to it.)

Abstract Sudoku Consider the abstract sudoku problem. An instance is a number \(k \), \(n \) variables \(x_1 x_n \) taking on values \(1..k \), and a family of subsets \(S_1, \ldots S_m \), each \(S_j \subseteq \{1..n\} \) and has size \(|S_j| = k \). A solution assigns each variable \(x_i \) a value \(a_i \) in \(\{1..k\} \). It is feasible if every value appears exactly once in each subset, i.e., for each \(S_j \), and each \(1 \leq v \leq k \), there is an \(i \in S_j \) with \(a_i = v \). The abstract sudoku problem is, given \(k \), \(n \) and the family \(S_1, \ldots S_m \), decide whether there is a feasible solution.
Prove that abstract sudoku is \(NP\)-complete. You can use without proof the \(NP\)-completeness of any problem proved \(NP\)-complete in class, in the text, or on the homeworks. (However, although it has been proved that non-abstract sudoku (see below) is also \(NP\)-complete, you should not use that fact for this problem.)

Sudoku The sudoku problem of size \(n\) is as follows. The input is an \(n^2 \times n^2\) matrix \(M\) whose entries are either “blank” or an integer between 1 and \(n^2\). A solution fills in the blank spaces with integers between 1 and \(n^2\). The following constraints must be met: Each integer from 1 to \(n^2\) appears exactly once in each row, in each column, and in each \(n \times n\) sub-matrix of the form \(M[jn+1...(j+1)n][in+1...(i+1)n]\) for each \(0 \leq i, j \leq n-1\). The problem is to decide whether there is a solution meeting the constraints.

Give at least two distinct reductions from Sudoku to \(CNFSAT\). For each, analyze the number of variables in the resulting \(CNF\), and the number of clauses of different sizes. In the next homework, you will be asked to run experiments combining these reductions with a SAT solver to solve Sudoku. Which reduction do you expect to have the best results in the experiment, and why?