March 29, 2010

1. Let Reg_k be the class of languages accepted by a deterministic finite automaton with at most k states. Prove that for every $k > 0$, Reg_k is a strict subset of Reg_{k+1}.

2. Let f be a non-decreasing, positive integer-valued function over the positive integers. Prove that if $f(2n) \in O(f(n))$, then there is a k so that $f(n) \in O(n^k)$. Is the converse always true? Prove it or give a counter-example.

3. a. Prove that any number n so that $n \mod 4 = 3$ has a prime factor p with $p \mod 4 = 3$. b. Prove that there are infinitely many primes p with $p \mod 4 = 3$.

4. In your favorite programming language, write a program that takes no input and prints itself (its own code). Your program may not make system calls.